Solar Energy News  
STELLAR CHEMISTRY
WFIRST will add pieces to the dark matter puzzle
by Ashley Balzer for GSFC News
Greenbelt MD (SPX) Nov 01, 2019

This Hubble Space Telescope mosaic shows a portion of the immense Coma galaxy cluster - containing more than 1,000 galaxies - located 300 million light-years away. The rapid motion of its galaxies was the first clue that dark matter existed.

The true nature of dark matter is one of the biggest mysteries in the universe. Scientists are trying to determine what exactly dark matter is made of so they can detect it directly, but our current understanding has so many gaps, it's difficult to know just what we're looking for.

WFIRST's ability to survey wide swaths of the universe will help us figure out what dark matter could be made of by exploring the structure and distribution of both matter and dark matter across space and time.

Why is dark matter such a perplexing topic? Scientists first suspected its existence over 80 years ago when Swiss-American astronomer Fritz Zwicky observed that galaxies in the Coma cluster were moving so quickly they should have been flung away into space - yet they remained gravitationally bound to the cluster by unseen matter.

Then in the 1970s, American astronomer Vera Rubin discovered the same type of problem in individual spiral galaxies. Stars toward the edge of the galaxy move too fast to be held in by the galaxy's luminous matter - there must be much more matter than we can see in these galaxies to hold the stars in orbit. Ever since these discoveries, scientists have been trying to piece together the puzzle using sparse clues.

There is currently a wide range of dark matter candidates. We don't even have a very good idea what the mass of dark matter particles might be, which makes it difficult to work out how best to search for them.

WFIRST's wide-field surveys will provide a comprehensive look at the distribution of galaxies and galaxy clusters across the universe in the most detailed dark matter studies ever undertaken, thanks to dark matter's gravitational effects. These surveys will yield new insight into the fundamental nature of dark matter, which will enable scientists to hone their searching techniques.

Most theories of the nature of dark matter particles suggest they almost never interact with normal matter. Even if someone dropped a huge chunk of dark matter on your head, you would probably perceive nothing. You wouldn't have any means of detecting its presence - all of your senses are moot when it comes to dark matter. You wouldn't even stop it from hurtling straight through your body and on toward Earth's core.

This doesn't happen to regular matter, such as cats or people, because forces between the atoms in the ground and the atoms in our bodies prevent us from falling through Earth's surface, but dark matter behaves strangely. Dark matter is so inconspicuous it is even invisible to telescopes that observe the cosmos in forms of light our eyes can't see, from radio waves to high-energy gamma rays.

"Lensing" dark matter
If dark matter is invisible, how do we know it exists? While dark matter doesn't interact with normal matter in most cases, it does affect it gravitationally (which is how it was first discovered decades ago), so we can map its presence by looking at clusters of galaxies, the most massive structures in the universe.

Light always travels in a straight line, but space-time - the fabric of the universe - is curved by concentrations of mass within it. So when light passes by a mass, its path curves as well: a straight line in a curved space.

Light that would normally pass near a galaxy cluster instead bends toward and around it, producing intensified - and sometimes multiple - images of the background source. This process, called strong gravitational lensing, transforms galaxy clusters into colossal natural telescopes that give us a glimpse of distant cosmic objects that would normally be too faint to be visible.

Since more matter leads to stronger lensing effects, gravitational lensing observations provide a way to determine the location and quantity of matter in galaxy clusters. Scientists have discovered that all of the visible matter we see in galaxy clusters isn't nearly enough to create the observed warping effects. Dark matter provides the surplus gravity.

Scientists have confirmed earlier observations by measuring how much matter in the very early universe is "normal" and how much is "dark" using experiments like NASA's Wilkinson Microwave Anisotropy Probe (WMAP). Even though normal matter makes up everything we can see, the universe must contain more than five times as much dark matter to fit the observations.

WFIRST will build on previous dark matter studies by using so-called weak gravitational lensing that tracks how smaller clumps of dark matter warp the apparent shapes of more distant galaxies. Observing lensing effects on this more refined scale will enable scientists to fill in more of the gaps in our understanding of dark matter.

The mission will measure the locations and quantities of both normal matter and dark matter in hundreds of millions of galaxies. Throughout cosmic history, dark matter has driven how stars and galaxies formed and evolved. If dark matter consists of heavy, sluggish particles, it would clump together readily and WFIRST should see galaxy formation early in cosmic history. If dark matter is made up of lighter, faster-moving particles, it should take longer to settle into clumps and for large-scale structures to develop.

WFIRST's gravitational lensing studies will allow us to peer back in time to trace how galaxies and galaxy clusters formed under the influence of dark matter. If astronomers can narrow down the candidates for dark matter particles, we'll be one step closer to finally detecting them directly in experiments on Earth.


Related Links
Wilkinson Microwave Anisotropy Probe (WMAP).
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Dark matter search enters new chapter
Hamburg, Germany (SPX) Oct 29, 2019
The international ALPS II ("Any light particle search") collaboration installed the first of 24 superconducting magnets today, marking the start of the installation of a unique particle physics experiment to look for dark matter. Located at the German research centre DESY in Hamburg, it is set to start taking data in 2021 by looking for dark matter particles that literally make light shine through a wall, thus providing clues to one of the biggest questions in physics today: what is the nature of dark m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Greenpeace blocks Total biorefinery that uses palm oil

Upcycling polyethylene plastic waste into lubricant oils

The use of sugarcane straw for bioenergy is an opportunity, but there are pros and cons

Turning plastic trash into treasure

STELLAR CHEMISTRY
Robot acquires new, essential spacewalking functions says cosmonaut

Human reflexes keep two-legged robot upright

New lightweight, portable robotic suit to increase running and walking performance

Two-legged robot mimics human balance while running and jumping

STELLAR CHEMISTRY
Offshore wind power set for 15-fold increase: IEA

Wind turbine design and placement can mitigate negative effect on birds

Computer models show clear advantages in new types of wind turbines

Model helps choose wind farm locations, predicts output

STELLAR CHEMISTRY
GM, Toyota, Chrysler back Trump on auto emissions

Enabling autonomous vehicles to see around corners

Researchers develop platform for scalable testing of autonomous vehicle safety

China demand for Jaguar Land Rover contains Tata Motors losses

STELLAR CHEMISTRY
Discoveries from fusion to astrophysics at global gathering

Magneto-inertial fusion experiment nears completion

Fuel injection helps reduce magnetic island instabilities

New insights could help tame speedy ions in fusion plasmas

STELLAR CHEMISTRY
Argentina's Grossi elected head of UN's nuclear watchdog

Microrobots clean up radioactive waste

Audit raps French energy giant EDF over nuclear project

GE Hitachi Nuclear Energy announces small modular reactor technology collaboration in Poland

STELLAR CHEMISTRY
S.Africa to increase coal-fired energy, sparking climate outcry

To save climate, tax carbon at $75 per ton: IMF

How to Harmonise Wildlife and Energy Manufacturing

Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

STELLAR CHEMISTRY
Deforestation, human activities accelerated soil erosion 4,000 years ago

Romanian rangers protest deaths of colleagues fighting illegal logging

Use the Amazon's natural bounty to save it: experts

From hotbed of crime to joggers' paradise: Nairobi forest thrives









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.