Solar Energy News  
SHAKE AND BLOW
Waiting for the complete rupture in Nepal
by Staff Writers
Zurich, Switzerland (SPX) Jan 18, 2019

illustration only

In April 2015, Nepal - and especially the region around the capital city, Kathmandu - was struck by a powerful tremor. An earthquake with a magnitude of 7.8 destroyed entire villages, traffic routes and cultural monuments, with a death toll of some 9,000.

However, the country may still face the threat of much stronger earthquakes with a magnitude of 8 or more. This is the conclusion reached by a group of earth scientists from ETH Zurich based on a new model of the collision zone between the Indian and Eurasian Plates in the vicinity of the Himalayas.

Using this model, the team of ETH researchers working with doctoral student Luca Dal Zilio, from the group led by Professor Taras Gerya at the Institute of Geophysics, has now performed the first high-resolution simulations of earthquake cycles in a cross-section of the rupture zone.

"In the 2015 quake, there was only a partial rupture of the major Himalayan fault separating the two continental plates. The frontal, near-surface section of the rupture zone, where the Indian Plate subducts beneath the Eurasian Plate, did not slip and remains under stress," explains Dal Zilio, lead author of the study, which was recently published in the journal Nature Communications.

Normally, a major earthquake releases almost all the stress that has built up in the vicinity of the focus as a result of displacement of the plates. "Our model shows that, although the Gorkha earthquake reduced the stress level in part of the rupture zone, tension actually increased in the frontal section close to the foot of the Himalayas. The apparent paradox is that 'medium-sized' earthquakes such as Gorkha can create the conditions for an even larger earthquake," says Dal Zilio.

Tremors of the magnitude of the Gorkha earthquake release stress only in the deeper subsections of the fault system over lengths of 100 kilometres. In turn, new and even greater stress builds up in the near-surface sections of the rupture zone.

According to the simulations performed by Dal Zilio and his colleagues, two or three further Gorkha quakes would be needed to build up sufficient stress for an earthquake with a magnitude of 8.1 or more. In a quake of this kind, the rupture zone breaks over the entire depth range, extending up to the Earth's surface and laterally - along the Himalayan arc - for hundreds of kilometres. This ultimately leads to a complete stress release in this segment of the fault system, which extends to some 2,000 kilometres in total.

Historical data shows that mega events of this kind have also occurred in the past. For example, the Assam earthquake in 1950 had a magnitude of 8.6, with the rupture zone breaking over a length of several hundred kilometres and across the entire depth range. In 1505, a giant earthquake struck with sufficient power to produce an approximately 800-kilometre rupture on the major Himalayan fault.

"The new model reveals that powerful earthquakes in the Himalayas have not just one form but at least two, and that their cycles partially overlap," says Edi Kissling, Professor of Seismology and Geodynamics. Super earthquakes might occur with a periodicity of 400 to 600 years, whereas "medium-sized" quakes such as Gorkha have a recurrence time of up to a few hundred years. As the cycles overlap, the researchers expect powerful and dangerous earthquakes to occur at irregular intervals.

However, they cannot predict when another extremely large quake will next take place. "No one can predict earthquakes, not even with the new model. However, we can improve our understanding of the seismic hazard in a specific area and take appropriate precautions," says Kissling.

The two-dimensional and high-resolution model also includes some research findings that were published after the Gorkha earthquake. To generate the simulations, the researchers used the Euler mainframe computer at ETH Zurich.

"A three-dimensional model would be more accurate and would also allow us to make statements about the western and eastern fringes of the Himalayas. However, modelling the entire 2,000 kilometres of the rupture zone would require enormous computational power," says Dal Zilio.

Research paper


Related Links
ETH Zurich
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
New computer modeling approach could improve understanding of megathrust earthquakes
Austin TX (SPX) Jan 11, 2019
Years before the devastating Tohoku earthquake struck the coast of Japan in 2011, the Earth's crust near the site of the quake was starting to stir. Researchers at The University of Texas at Austin are using computer models to investigate if tiny tremors detected near this site could be connected to the disaster itself. The research could help enhance scientists' understanding of forces driving megathrust earthquakes - the world's most powerful type of earthquake - and improve earthquake hazard as ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Researchers create 'shortcut' to terpene biosynthesis in E. coli

Yeast makes ethanol to prevent metabolic overload

Green catalysts with Earth-abundant metals accelerate production of bio-based plastic

Tel Aviv researchers develop biodegradable plastic from seawater algae

SHAKE AND BLOW
Artificial bug eyes

Deere puts spotlight on high-tech farming

How game theory can bring humans and robots closer together

Breadmaking robot startup eyes fresh connections

SHAKE AND BLOW
US Wind Inc. agrees to sell its New Jersey offshore lease to EDF Renewables North America

Wind to lead U.S. electric capacity additions at power plants in 2019

Upwind wind plants can reduce flow to downwind neighbors

More than air: Researchers fine-tune wind farm simulation

SHAKE AND BLOW
Keeping roads in good shape reduces greenhouse gas emissions, Rutgers-led study finds

Trade war delays Chinese automaker GAC's entry into US

Intel vet takes wheel of self-driving car startup Zoox

Opel helps France's PSA buck China, Iran auto downturn

SHAKE AND BLOW
Fiery sighting: A new physics of eruptions that damage fusion experiments

Technique identifies electricity-producing bacteria

Cartilage could be key to safe 'structural batteries'

Scientists discover a process that stabilizes fusion plasmas

SHAKE AND BLOW
Framatome receives $49 million grant to accelerate enhanced accident tolerant fuel development

Why does nuclear fission produce pear-shaped nuclei?

Framatome develops mobile technology for non-destructive analysis of radioactive waste containers

The first new Generation 3 EPR nuclear reactor enters commercial operation

SHAKE AND BLOW
US charges Chinese national for stealing energy company secrets

Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

SHAKE AND BLOW
Model Bundchen 'surprised' by Brazil minister criticism on environment

Bulgaria activists win case to save UNESCO-listed forest

Beech trees are dying, and nobody's sure why

Head of Brazil's environmental agency resigns









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.