Subscribe free to our newsletters via your
. Solar Energy News .




ENERGY TECH
Waste silicon gets new life in lithium-ion batteries at Rice University
by Staff Writers
Houston TX (SPX) Sep 05, 2012


Rice University research scientist Arava Leela Mohana Reddy holds strips of anode material and a piece of waste silicon (at left). Researchers at Rice and in Belgium found a way to recycle silicon into flexible anodes for lithium-ion batteries. (Credit: Jeff Fitlow/Rice University).

Researchers at Rice University and the Universite catholique de Louvain, Belgium, have developed a way to make flexible components for rechargeable lithium-ion (LI) batteries from discarded silicon. The Rice lab of materials scientist Pulickel Ajayan created forests of nanowires from high-value but hard-to-recycle silicon. Silicon absorbs 10 times more lithium than the carbon commonly used in LI batteries, but because it expands and contracts as it charges and discharges, it breaks down quickly.

The Ajayan lab reports this week in the journal Proceedings of the National Academy of Science on its technique to make carefully arrayed nanowires encased in electrically conducting copper and ion-conducting polymer electrolyte into an anode. The material gives nanowires the space to grow and shrink as needed, which prolongs their usefulness. The electrolyte also serves as an efficient spacer between the anode and cathode.

Transforming waste into batteries should be a scalable process, said Ajayan, Rice's M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. The researchers hope their devices are a step toward a new generation of flexible, efficient, inexpensive batteries that can conform to any shape.

Co-lead authors Arava Leela Mohana Reddy, a Rice research scientist, and Alexandru Vlad, a former research associate at Rice and now a postdoctoral researcher at the Universite catholique de Louvain, were able to pull multiple layers of the anode/electrolyte composite from a single discarded wafer. Samples of the material made at Rice look like strips of white tape or bandages.

They used an established process, colloidal nanosphere lithography, to make a silicon corrosion mask by spreading polystyrene beads suspended in liquid onto a silicon wafer. The beads on the wafer self-assembled into a hexagonal grid - and stayed put when shrunken chemically. A thin layer of gold was sprayed on and the polystyrene removed, which left a fine gold mask with evenly spaced holes on top of the wafer. "We could do this on wafers the size of a pizza in no time," Vlad said.

The mask was used in metal-assisted chemical etching, in which the silicon dissolved where it touched the metal. Over time in a chemical bath, the metal catalyst would sink into the silicon and leave millions of evenly spaced nanowires, 50 to 70 microns long, poking through the holes.

The researchers deposited a thin layer of copper on the nanowires to improve their ability to absorb lithium and then infused the array with an electrolyte that not only transported ions to the nanowires but also served as a separator between the anode and a later-applied cathode.

"Etching is not a new process," Reddy said. "But the bottleneck for battery applications had always been taking nanowires off the silicon wafer because pure, free-standing nanowires quickly crumble." The electrolyte engulfs the nanowire array in a flexible matrix and facilitates its easy removal. "We just touch it with the razor blade and it peels right off," he said. The mask is left on the unperturbed wafer to etch a new anode.

When combined with a spray-on current collector on one side and a cathode and current collector on the other, the resulting battery showed promise as it delivered 150 milliamp hours per gram with little decay over 50 charge/discharge cycles. The researchers are working to enhance those qualities and testing the anodes in standard battery configurations.

"The novelty of the approach lies in its inherent simplicity," Reddy said. "We hope the present process will provide a solution for electronics waste management by allowing a new lease on life for silicon chips."

Co-authors are intern Anakha Ajayan and graduate student Neelam Singh of Rice and professors Jean-Francois Gohy and Sorin Melinte of the Universite catholique de Louvain. The Army Research Office supported research at Rice, and the National Scientific Research Foundation, the Special Research Fund, the TINTIN project - ARC, the French Community of Belgium, the Fund for Scientific Research and the Wallonne Region (Programme ERABLE) supported research in Belgium.

.


Related Links
Rice University
Ajayan Research Group
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
IBN Develops Superior Fuel Cell Material
Singapore (SPX) Aug 29, 2012
Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, Energy and Environmental Science. Fuel cells are a promising technology for use as a source of electricity to power electronic devices, vehicles, military aircraft and equipment. A fuel ... read more


ENERGY TECH
Waste cooking oil makes bioplastics cheaper

Japan toilet maker showcases 'poop-powered' motorbike

Biorefinery makes use of every bit of a soybean

Warning issued for modified algae

ENERGY TECH
Soft robots, in color

NASA Historic Test Stands Make Way for New Reusable Robotic Lander Neig

Dextrous robotic hand gets thumbs up

The first robot that mimics the water striders' jumping abilities

ENERGY TECH
Japan starts up first offshore wind farm

Maximum Protection against Dust; Minimal Effort

US Wind Power Market Riding a Wave That Is Likely to Crest in 2012

Wind farms: A danger to ultra-light aircraft?

ENERGY TECH
GM says China sales grow despite slowdown

US auto sales jump 20 percent in August

New Saab cars to be rolled out in 2014

China's Dongfeng sees profits slide in first half

ENERGY TECH
Waste silicon gets new life in lithium-ion batteries at Rice University

Nigerian oil output slumps

EU renews push for trans-Caspian pipeline

TransCanada submits new US route for Keystone pipeline

ENERGY TECH
Japanese majority favor zero nuclear power

IAEA head says don't relax on nuclear safety

Greens see red after French minister hints at nuclear U-turn

Hundreds join anti-nuclear rally in Tokyo

ENERGY TECH
Australian shipping emissions identified

Australia abandons coal power plant closure plans

Russian Arctic resources

Zimbabwe utility halts disconnections

ENERGY TECH
Controversy in Liberian forest logging

Amazonian deforestation may cut rainfall by a fifth

Liberia forests sold off in secret logging contracts: report

Natural Regeneration Building Urban Forests, Altering Species Composition




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement