Solar Energy News  
Watching Venus Glow In The Dark

This false-colour composite image of Venus's atmosphere was obtained by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board ESA's Venus Express, from a limb (or profile) perspective. The top panel shows the oxygen nightglow of Venus at an altitude of approximately 96 km over the surface of the planet, seen at a wavelength of 1.27 microns. The bottom panel shows the same portion of the atmosphere observed at the same time, but at a different wavelength (around 1.22 microns). Here it is possible to see the nightglow of nitric oxide, which is much weaker than that of oxygen and comes from an higher altitude - around 110 km above the surface. In red is the thermal emission of Venus at 1.74 microns; one of the atmospheric windows of Venus exploited by VIRTIS. Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA
by Staff Writers
Paris, France (ESA) Feb 25, 2009
ESA's Venus Express spacecraft has observed an eerie glow in the night-time atmosphere of Venus. This infrared light comes from nitric oxide and is showing scientists that the atmosphere of Earth's nearest neighbour is a temperamental place of high winds and turbulence.

Unfortunately, the glow on Venus cannot be seen with the naked eye because it occurs at the invisible wavelengths of infrared. ESA's Venus Express, however, is equipped with the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, which can see these wavelengths.

VIRTIS has made two unambiguous detections of the so-called nightglow for nitric oxide at Venus. This is the first time such infrared detections have been made for any planet and provide a new insight into Venus's atmosphere.

"The nightglow can give us a lot of information," says Antonio Garc�a Munoz, who was at the Australian National University when the research was carried out; he is now located at the Instituto de Astrof�sica de Canarias, Tenerife, Spain.

"It can provide details about the temperature, wind direction, composition and chemistry of an atmosphere."

The nightglow is ultimately caused by the Sun's ultraviolet light, which streams into a planet's atmosphere and breaks the molecules up into atoms and other simpler molecules. The free atoms may recombine again and, in specific cases, the resulting molecule is endowed with some extra energy that is subsequently lost in the form of light.

On the day-side of the planet, any atoms that do find their way back together are outshone by the sunlight falling into the atmosphere.

But on the night-side, where atoms are transported by a vigorous diurnal circulation, the glow can be seen with appropriate instruments, such as VIRTIS.

A nitric oxide nightglow in the infrared has never been observed in the atmospheres of Mars or Earth, although we know that the necessary nitric oxide molecules are present because they have been observed in ultraviolet.

The nightglow on Venus has been seen at infrared wavelengths before, betraying oxygen molecules and the hydroxyl radical, but this is the first detection of nitric oxide at those wavelengths. It offers data about the atmosphere of Venus that lies above the cloud tops at around 70 km. The oxygen and hydroxyl emissions come from 90-100 km, whereas the nitric oxide comes from 110-120 km altitude.

Yet, even VIRTIS cannot see the nitric oxide nightglow all the time because it is often just too faint.

"Luckily for us, Venus has a temperamental atmosphere," says Garc�a Munoz, "Packets of oxygen and nitrogen atoms are blown around." Sometimes these become dense enough to boost the brightness of the nightglow, making it visible to VIRTIS.

Venus Express can observe the three nightglow emissions simultaneously, and this gives rise to a mystery. The nightglows from the different molecules do not necessarily happen together. "Perhaps when we have more observations, we will understand the correlation between them," says Garc�a Munoz.

In order to do that, the VIRTIS team plans to continue monitoring the planet, building up a database of this fascinating phenomenon.

Related Links
Venus Express
Venus Express News and Venusian Science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Venus Comes To Life At Wavelengths Invisible To Human Eyes
Paris, France (ESA) Dec 04, 2008
A pale yellow dot to the human eye, Earth's twin planet comes to life in the ultraviolet and the infrared. New images taken by instruments on board ESA's Venus Express provide insight into the turbulent atmosphere of our neighbouring planet.







  • Patience Pays Off With Methanol For Uranium Bioremediation
  • Italy takes first step to return to nuclear energy
  • Launch date to be set for Iran's first nuclear plant
  • Enel to take stake in French reactor project: sources

  • Climate change risk underestimated: study
  • 2008 Was Earth's Coolest Year Since 2000
  • US, China pledge joint effort on economy, climate change
  • Scientists map CO2 emissions with Google Earth

  • Nutrient Pollution Chokes Marine And Freshwater Ecosystems
  • US milk company denies China products unsafe
  • New study points to GM contamination of Mexican corn
  • Aerosols - Their Part In Our Rainfall

  • Urban elephants ply Bangkok streets in search of tourist dollars
  • Great Lake's Sinkholes Host Exotic Ecosystems
  • Bizarre Bird Behavior Predicted By Game Theory
  • Ribosome Building Blocks

  • MIT Rocket Aims For Cheaper Nudges In Space
  • India's Cryogenic Engine Set For Integration With Rocket
  • Segment Of Ares I-X Test Rocket Arrives At Kennedy
  • Boeing Submits Proposals For Ares V Rocket Design Support

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Orbital's Launch Of Taurus Rocket Is Unsuccessful
  • Counting Carbon
  • Google shoots down 'Atlantis' pictures
  • Five Things About The Orbiting Carbon Observatory

  • Team Develops New Metamaterial Device
  • One Of The Most Important Problems In Materials Science Solved
  • NASA mission to monitor carbon dioxide fails
  • Eight Years In Orbit For Swedish Research Satellite

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement