Solar Energy News
STELLAR CHEMISTRY
Webb makes first detection of crucial carbon molecule
These Webb images show a part of the Orion Nebula known as the Orion Bar. The largest image, on the left, is from Webb's NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb's MIRI (Mid-Infrared Instrument). At the very center of the MIRI area is a young star system with a protoplanetary disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system.
Webb makes first detection of crucial carbon molecule
by Staff Writers
Baltimore MD (SPX) Jun 27, 2023

A team of international scientists has used NASA's James Webb Space Telescope to detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Carbon compounds form the foundations of all known life, and as such are particularly interesting to scientists working to understand both how life developed on Earth, and how it could potentially develop elsewhere in our universe. The study of interstellar organic (carbon-containing) chemistry, which Webb is opening in new ways, is an area of keen fascination to many astronomers.

The unique capabilities of Webb made it an ideal observatory to search for this crucial molecule. Webb's exquisite spatial and spectral resolution, as well as its sensitivity, all contributed to the team's success. In particular, Webb's detection of a series of key emission lines from CH3+ cemented the discovery.

"This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of CH3+ in interstellar chemistry," said Marie-Aline Martin-Drumel of the University of Paris-Saclay in France, a member of the science team.While the star in d203-506 is a small red dwarf, the system is bombarded by strong ultraviolet (UV) light from nearby hot, young, massive stars. Scientists believe that most planet-forming disks go through a period of such intense UV radiation, since stars tend to form in groups that often include massive, UV-producing stars.

Typically, UV radiation is expected to destroy complex organic molecules, in which case the discovery of CH3+ might seem to be a surprise. However, the team predicts that UV radiation might actually provide the necessary source of energy for CH3+ to form in the first place. Once formed, it then promotes additional chemical reactions to build more complex carbon molecules.

Broadly, the team notes that the molecules they see in d203-506 are quite different from typical protoplanetary disks. In particular, they could not detect any signs of water.

"This clearly shows that ultraviolet radiation can completely change the chemistry of a protoplanetary disk. It might actually play a critical role in the early chemical stages of the origins of life," elaborated Olivier Berne of the French National Centre for Scientific Research in Toulouse, lead author of the study.

These findings, which are from the PDRs4ALL Early Release Science program, have been published in the journal Nature.

Related Links
PDRs4ALL Early Release Science Program
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Molecular filament shielded young solar system from supernova
Tokyo, Japan (SPX) Jun 23, 2023
Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast. Primitive mete ... read more

STELLAR CHEMISTRY
New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

In Iowa, Asa Hutchinson touts measured approach to green energy transition

Carbon mitigation payments can make bioenergy crops more appealing for farmers

STELLAR CHEMISTRY
Will AI really destroy humanity?

At Toronto tech show, second thoughts emerge over AI

'Don't steal our voices': dubbing artists confront AI threat

Rise of the cute robots

STELLAR CHEMISTRY
New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

Sweden greenlights two offshore windpower farms

STELLAR CHEMISTRY
Strange bedfellows: auto rivals embrace Tesla EV chargers

VW eyes sales growth powered by US, China

European leaders host Musk, chase Tesla investment

GM reaches deal for access to Tesla's North American chargers

STELLAR CHEMISTRY
Dual-use rechargeable battery

Towards efficient lithium-air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts

Nobel-winning lithium battery inventor John Goodenough dies at 100

Ford-backed electric battery venture approved for $9.2bn US loan

STELLAR CHEMISTRY
Ukraine warns against 'panic' after alleged nuclear threat

Framatome selected by US nuclear power plant to provide incore instrumentation

UN nuclear chief says situation 'serious' at Ukraine plant

UN visit to Ukraine nuclear plant delayed: Russia

STELLAR CHEMISTRY
Big ideas but small steps at climate finance summit

Why Saudi Arabia's "The Line" isn't a revolution in urban living

The global search for cooling: an energy-demanding loop

Big ideas, small steps at climate finance summit

STELLAR CHEMISTRY
Football pitch of tropical forest lost every 5 seconds

Tropical deforestation up 10% in 2022 releasing billions of tons of carbon

Green growth in Amazon would bring Brazil billions: study

Latin America bank eyes finance 'umbrella' role for Amazon rainforest

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.