Solar Energy News  
TECH SPACE
What happens when materials take tiny hits
by Staff Writers
Boston MA (SPX) Dec 03, 2018

This scanning electron micrograph shows the crater left by the impact of a 10-micrometer particle traveling at more than 1 kilometer per second. Impacts at that speed produce some melting and erosion of the surface, as revealed by this research.

When tiny particles strike a metal surface at high speed - for example, as coatings being sprayed or as micrometeorites pummeling a space station - the moment of impact happens so fast that the details of process haven't been clearly understood, until now.

A team of researchers at MIT has just accomplished the first detailed high-speed imaging and analysis of the microparticle impact process, and used that data to predict when the particles will bounce away, stick, or knock material off the surface and weaken it. The new findings are described in a paper appearing today in the journal Nature Communications.

Mostafa Hassani-Gangaraj, an MIT postdoc and the paper's lead author, explains that high-speed microparticle impacts are used for many purposes in industry, for example, for applying coatings, cleaning surfaces, and cutting materials.

They're applied in a kind of superpowered version of sandblasting that propels the particles at supersonic speeds. Such blasting with microparticles can also be used to strengthen metallic surfaces. But until now these processes have been controlled without a solid understanding of the underlying physics of the process.

"There are many different phenomena that can take place" at the moment of impact, Hassani-Gangaraj says, but now for the first time the researchers have found that a brief period of melting upon impact plays a crucial role in eroding the surface when the particles are moving at speeds above a certain threshold.

That's important information because the rule of thumb in industrial applications is that higher velocities will always lead to better results. The new findings show that this is not always the case, and "we should be aware that there is this region at the high end" of the range of impact velocities, where the effectiveness of the coating (or strengthening) declines instead of improving, Hassani-Gangaraj says. "To avoid that, we need to be able to predict" the speed at which the effects change.

The results may also shed light on situations where the impacts are uncontrolled, such as when wind-borne particles hit the blades of wind turbines, when microparticles strike spacecraft and satellites, or when bits of rock and grit carried along in a flow of oil or gas erode the walls of pipelines. "We want to understand the mechanisms and exact conditions when these erosion processes can happen," Hassani-Gangaraj says.

The challenge of measuring the details of these impacts was twofold. First, the impact events take place extremely quickly, with particles travelling at upward of one kilometer per second (three or four times faster than passenger jet airplanes). And second, the particles themselves are so tiny, about a tenth of the thickness of a hair, that observing them requires very high magnification as well.

The team used a microparticle impact testbed developed at MIT, which can record impact videos with frame rates of up to 100 million frames per second, to perform a series of experiments that have now clearly delineated the conditions that determine whether a particle will bounce off a surface, stick to it, or erode the surface by melting.

For their experiments, the team used tin particles of about 10 micrometers (hundred thousandths of a meter) in diameter, accelerated to speeds ranging up to 1 kilometer per second and hitting a tin surface.

The particles were accelerated using a laser beam that instantly evaporates a substrate surface and ejects the particles in the process. A second laser beam was used to illuminate the flying particles as they struck the surface.

Previous studies had relied on post-mortem analysis - studying the surface after the impact has taken place. But that did not allow for an understanding of the complex dynamics of the process. It was only the high-speed imaging that revealed that melting of both the particle and the surface took place at the moment of impact, in the high-speed cases.

The team used the data from these experiments to develop a general model to predict the response of particles of a given size travelling at a given speed, says David Veysset, a staff researcher at MIT and co-author of the paper.

So far, he says, they have used pure metals, but the team plans further tests using alloys and other materials. They also intend to test impacts at a variety of angles other than the straight-down impacts tested so far.

"We can extend this to every situation where erosion is important," he says. The aim is to develop "one function that can tell us whether erosion will happen or not."

That could help engineers "to design materials for erosion protection, whether it's in space or on the ground, wherever they want to resist erosion," Veysset says.

The team included senior author Christopher Schuh, professor and head of the Department of Materials Science and Engineering, and Keith Nelson, professor of chemistry. The work was supported by the U.S. Department of Energy, the U.S. Army Research Office, and the Office of Naval research.

Research Report: "Melt-driven erosion in microparticle impact."


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
New technique to make objects invisible proposed
Extremadura, Spain (SPX) Nov 27, 2018
In recent years, invisibility has become an area of increasing research interest due to advances in materials engineering. This research work by the UEx, which has been published in Scientific Reports by the Nature Group, has explored the electromagnetic properties of specific materials which can make certain objects invisible when they are introduced into its interior, in the manner of fillers. Normally, artificial materials known as metamaterials, or materials with high dielectric or magnetic co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Why a curious crustacean could hold secret to making renewable energy from wood

Team converts wet biological waste to diesel-compatible fuel

Algae testbed experiment yields data useful for future projects

Researchers advance biomass transformation process

TECH SPACE
Insight into swimming fish could lead to robotics advances

Flexible electronic skin aids human-machine interactions

Embark on a NASA technology scavenger hunt with Optimus Prime

Smarter AI: Machine learning without negative data

TECH SPACE
Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

TECH SPACE
Madrid orders removal of electric scooters

Volkswagen says next generation of combustion engine cars to be its last

Luxury 'Red Flag' models buck China auto sales slump

China agrees to 'reduce and remove' tariffs on US cars: Trump

TECH SPACE
Interfacial electronic state improving hydrogen storage capacity in Pd-MOF materials

A step closer to fusion energy

Jumpin' droplets! Researchers seek to improve efficiency of condensers

A new way to provide cooling without power

TECH SPACE
Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

France to close 14 nuclear reactors by 2035: Macron

Hard choices as Macron charts France's energy future

TECH SPACE
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

TECH SPACE
Snowpack declines may stunt tree growth and forests' ability to store carbon emissions

Brazil's Bolsonaro blasts govt environmental agencies

Brazil loses 'one million football pitches' worth of forest

In Lebanon, climate change devours ancient cedar trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.