Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
What if quantum physics worked on a macroscopic level?
by Staff Writers
Geneva, Switzerland (SPX) Jul 29, 2013


File image.

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic. In January 2011, they managed to entangle crystals, therefore surpassing the atomic dimension.

Now, Professor Nicolas Gisin's team has successfully entangled two optic fibers, populated by 500 photons. Unlike previous experiments which were carried out with the fiber optics of one photon, this new feat (which has been published in Nature Physics) begins to answer a fundamental question: can quantum properties survive on a macroscopic level?

For thirty years, physicists have been able to entangle photon pairs (particles of light). Thus, an action on the first particle will have an instant impact on the second, regardless of the distance and the obstacles between them. It occurs as if it were one single photon present at two different places. With this feat in mind, one question remains: can larger elements be entangled on a macroscopic level?

It would seem intuitive to think that the rules of physics that apply at the atomic level would be transferable to the macroscopic world. However, attempts to prove this have not been easy. In fact, when the size of a quantum system increases, it interacts more and more with its surrounding environment, which rapidly destroys its quantum properties. This phenomenon, known as quantum decoherence, is one of the limitations on the capability of macroscopic systems to retain their quantum properties.

From micro to macroscopic
Despite these limitations, and due to technological advances, scientists from UNIGE's Faculty of Science were able to entangle two fiber optics populated by 500 photons, unlike those that were previously entangled to only one photon.

To do this, the team led by Nicolas Gisin, professor in the Physics Section, created an entanglement between two fiber optics on a microscopic level before moving it to the macroscopic level. The entangled state survived the transition to a larger-scale world and the phenomenon could even be observed with the traditional means of detection, i.e. practically with the naked eye.

In order to verify that the entanglement survived in the macroscopic world, the physicists reconverted the phenomenon at the microscopic level.

This first large-scale experiment paves the way for many applications that quantum physics offers. The entanglement at the macroscopic level is one of the main research areas in the field, and we hope to entangle increasingly large objects in the years to come," said Professor Gisin.

.


Related Links
Universite de Geneve
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Making big 'Schroedinger cats'
Calgary, Canada (SPX) Jul 29, 2013
Since Erwin Schroedinger's famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects. Researchers at the University of Calgary recently made a significant step forward in this direction by creating a large system that is in two substantially different states at the same time. ... read more


TIME AND SPACE
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

TIME AND SPACE
Spain museum uses robot to help restore works

Chips that mimic the brain

Humanoid robot that could save people in disasters unveiled

Thin 'e-skin' could lead to more 'touchy-feely' robots

TIME AND SPACE
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

TIME AND SPACE
BMW takes 'great leap forward' into electric car market

Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

TIME AND SPACE
Myanmar-China gas pipeline starts flowing: company

Blast halts Iraq oil exports to Turkey

Oil spill reaches Thailand resort island

Saudi billionaire prince urges less reliance on oil

TIME AND SPACE
Nuke experts blast Fukushima operator over leaks

Westinghouse and Vitkovice Take First Concrete Steps Towards Building Czech AP1000 Reactors

Rejected environmental report could delay Turkey's first nuke plant

New nuclear fuel-rod cladding could lead to safer power plants

TIME AND SPACE
Americans continue to use more renewable energy sources

Sweden's Vattenfall hit by $4.6-bn charge as energy demand plunges

Six Tech Advancements Changing the Fossil Fuels Game

Free market is best way to combat climate change

TIME AND SPACE
Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable

Oil palm genome boosts hopes for tropical forests

Loss of African woodland may impact on climate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement