Solar Energy News  
STELLAR CHEMISTRY
When helium behaves like a black hole
by Staff Writers
Burlington, VT (SPX) Mar 23, 2017


Scientists have discovered that a sphere of cold helium atoms (in green) - interacting with a surrounding larger container of the same kind of atoms (in blue) - follows a bizarre rule of physics, called an entanglement area law, also observed in black holes. This discovery points to a "deeper reality," says University of Vermont physicist Adrian Del Maestro and may be a step toward using superfluid helium as the fuel of a new generation of ultra-fast quantum computers. Image courtesy Adrian Del Maestro/Nature Physics. For a larger version of this image please go here.

A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space - is also true for cold helium atoms that can be studied in laboratories. "It's called an entanglement area law," says Adrian Del Maestro, a physicist at the University of Vermont who co-led the research. That this law appears at both the vast scale of outer space and at the tiny scale of atoms, "is weird," Del Maestro says, "and it points to a deeper understanding of reality."

The new study was published in the journal Nature Physics - and it may be a step toward a long-sought quantum theory of gravity and new advances in quantum computing.

At The Surface
In the 1970s, famed physicists Stephen Hawking and Jacob Bekenstein discovered something strange about black holes. They calculated that when matter falls into one of these bottomless holes in space, the amount of information it gobbles up - what scientists call its entropy - increases only as fast as its surface area increases, not its volume. This would be like measuring how many files there are in a filing cabinet based on the surface area of the drawer rather than how deep the drawer is. As with many aspects of modern physics, check your common sense at the door.

"We have found the same type of law is obeyed for quantum information in superfluid helium," says Del Maestro.

To make their discovery, UVM's Del Maestro and three colleagues from the University of Waterloo in Canada first created an exact simulation of the physics of extremely cold helium after it transforms from a gas into a form of matter called a superfluid: below about two degrees Kelvin, helium atoms - exhibiting the dual wave/particle nature that Max Planck and others discovered - become glopped together such that the individual atoms cannot be described independent from each other. Instead, they form a cooperative dance that the scientists call quantum entangled.

Using two supercomputers, the scientists explored the interactions of sixty-four helium atoms in a superfluid. They found that the amount of entangled quantum information shared between two regions of a container - a sphere of the helium partitioned off from the larger container - was determined by the surface area of the sphere and not its volume. Like a holograph, it seems that a three-dimensional volume of space is entirely encoded on its two-dimensional surface. Just like a black hole.

This idea had been guessed at from a principle in physics called "locality" but had never been observed before in an experiment. By using a complete numerical simulation of all the attributes of helium, the scientists were, for the first time ever, able to demonstrate the existence of the entanglement area law in a real quantum liquid.

"Superfluid helium could become an important resource - the fuel - for a new generation of quantum computers," says Del Maestro, whose work is supported by the National Science Foundation. But to make use of its huge information processing potential, he says, "we have to understand more deeply how it works."

Spooky Neighborhoods
In the 1920s, Albert Einstein famously - and skeptically - referred to entanglement as "spooky action at a distance." Since that time, entanglement has been demonstrated as real by numerous laboratory and theoretical experiments. Instead of defying the universe's maximum speed limit - the speed of light - what entanglement increasingly seems to show is that our human macro-scale understanding of distance, and time itself, may be illusory. A pair of entangled particles may have a quantum communication, seeming to "know" each others' state instantly across miles.

But this intuition mixes up our classical view of reality with a deeper quantum reality in which a form of information - entanglement entropy - is "delocalized," spread out in a system, with millions of possible states, or "superpositions," that only become fixed by the action of measuring. (Consider Schrodinger's cat - both dead and alive.)

"Entanglement is non-classical information shared between parts of a quantum state," notes Del Maestro. It's "the characteristic trait of quantum mechanics that is most foreign to our classical reality."

Being able to understand, let alone control, quantum entanglement in complex systems with many particles has proven difficult. The observation of an entanglement area law in this new experiment points toward quantum liquids, like superfluid helium, as a possible medium for starting to master entanglement.

For example, the new study reveals that the density of the superfluid helium regulates the amount of entanglement. That suggests that laboratory experiments and, eventually, quantum computers could manipulate the density of a quantum liquid as a "possible knob," Del Maestro says, for regulating entanglement.

Hunting Gravity
And this new research has implications for some fundamental problems in physics. So far, the study of gravity has largely defied efforts to bring it under the umbrella of quantum mechanics, but theorists continue to look for connections.

"Our classical theory of gravity relies on knowing exactly the shape or geometry of space-time," Del Maestro says, but quantum mechanics requires uncertainty about this shape. A piece of the bridge between these may be formed by this new study's contribution to the "holographic principle": the exotic contention that the entire 3-D universe might be understood as two-dimensional information - whether a gargantuan black hole or microscopic puddle of superfluid helium.

Research paper

STELLAR CHEMISTRY
Tracing Aromatic Molecules in the Early Universe
Riverside CA (SPX) Mar 23, 2017
A UC Riverside-led team of astronomers have taken us a step closer to better understand the formation and destruction mechanisms of dust molecules in the distant universe. A molecule found in car engine exhaust fumes that is thought to have contributed to the origin of life on Earth has made astronomers heavily underestimate the amount of stars that were forming in the early Universe, a Universi ... read more

Related Links
University of Vermont
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Community in chaotic Jakarta goes green to fight eviction

Study IDs link between sugar signaling and regulation of oil production in plants

NASA Study Confirms Biofuels Reduce Jet Engine Pollution

Scientists harness solar power to produce clean hydrogen from biomass

STELLAR CHEMISTRY
Origami-inspired Robot Can Hitch a Ride with a Rover

Quadruped robot exhibits spontaneous changes in step with speed

Kraken Sonar Systems gains funding for robotics project

'Tree-on-a-chip' passively pumps water for days

STELLAR CHEMISTRY
North Carolina offshore wind hailed as job creator

North Carolina ready for offshore wind energy auction

Flagship English Channel wind farm nears completion

French, Spanish companies set for more wind power off coast of France

STELLAR CHEMISTRY
China's Geely opens UK plant for electric London taxis

Intel deal may fuel Israel's rise as builder of car brains

Germany pushing e-mobility options

More gas guzzlers due to Trump? Not necessarily

STELLAR CHEMISTRY
TU Graz researchers show that enzyme function inhibits battery ageing

New gel-like coating beefs up the performance of lithium-sulfur batteries

Non-toxic material that generates electricity through hot and cold

New feedback system could allow greater control over fusion plasma

STELLAR CHEMISTRY
Loss-hit Toshiba nosedives on fears about future

The EIC and Nuclear AMRC sign MoU

German energy company RWE evolving for success

Potential approach to how radioactive elements could be 'fished out' of nuclear waste

STELLAR CHEMISTRY
CO2 stable for 3rd year despite global growth: IEA

Emissions flat for three years in a row, IEA says

New research urges a rethink on global energy subsidies

New Zealand lauded for renewables, but challenges remain

STELLAR CHEMISTRY
Reconsider the impact of trees on water cycles and climate, scientists ask

Late US billionaire's record land gift lays Chile row to rest

Did humans create the Sahara desert?

Louisiana wetlands hurting from accelerated sea level rise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.