. Solar Energy News .




.
STELLAR CHEMISTRY
Where do the highest-energy cosmic rays come from?
by Staff Writers
Berkeley CA (SPX) Apr 20, 2012

IceCube's 5,160 digital optical modules are suspended from 86 strings reaching a mile and a half below the surface at the South Pole. Each sphere contains a photomultiplier tube and electronics to capture the faint flashes of muons speeding through the ice, their direction and energy - and thus that of the neutrinos that created them - tracked by multiple detections. At lower left is the processed signal of an energetic muon moving upward through the array, created by a neutrino that traveled all the way through the Earth. Credit: IceCube Collaboration and Lawrence Berkeley National Laboratory. For a larger version of this image please go here.

The IceCube neutrino telescope encompasses a cubic kilometer of clear Antarctic ice under the South Pole, a volume seeded with an array of 5,160 sensitive digital optical modules (DOMs) that precisely track the direction and energy of speeding muons, massive cousins of the electron, which are created when neutrinos collide with atoms in the ice.

The IceCube Collaboration recently announced the results of an exhaustive search for high-energy neutrinos that would likely be produced if the violent extragalactic explosions known as gamma-ray bursts (GRBs) are the source of ultra-high-energy cosmic rays.

"According to a leading model, we would have expected to see 8.4 events corresponding to GRB production of neutrinos in the IceCube data used for this search," says Spencer Klein of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), who is a long-time member of the IceCube Collaboration. "We didn't see any, which indicates that GRBs are not the source of ultra-high-energy cosmic rays."

"This result represents a coming-of-age of neutrino astronomy," says Nathan Whitehorn from the University of Wisconsin-Madison, who led the recent GRB research with Peter Redl of the University of Maryland. "IceCube, while still under construction, was able to rule out 15 years of predictions and has begun to challenge one of only two major possibilities for the origin of the highest-energy cosmic rays, namely gamma-ray bursts and active galactic nuclei."

Redl says, "While not finding a neutrino signal originating from GRBs was disappointing, this is the first neutrino astronomy result that is able to strongly constrain extra-galactic astrophysics models, and therefore marks the beginning of an exciting new era of neutrino astronomy."

The IceCube Collaboration's report on the search appears in the April 19, 2012, issue of the journal Nature.

Blazing fireballs and nature's accelerators
Cosmic rays are energetic particles from deep in outer space - predominately protons, the bare nuclei of hydrogen atoms, plus some heavier atomic nuclei. Most probably acquire their energy when naturally accelerated by exploding stars. A few rare cosmic rays pack an astonishing wallop, however, with energies prodigiously greater than the highest ever attained by human-made accelerators like CERN's Large Hadron Collider. Their sources are a mystery.

"Nature is capable of accelerating elementary particles to macroscopic energies," says Francis Halzen, IceCube's principal investigator and a professor of physics at the University of Wisconsin-Madison. "There are basically only two ideas on how she does this: in gravitationally driven particle flows near the supermassive black holes at the centers of active galaxies, and in the collapse of stars to a black hole, seen by astronomers as gamma ray bursts."

Klein, the deputy director of Berkeley Lab's Nuclear Science Division (NSD, explains that in active galactic nuclei (AGNs) "the black holes suck in matter and eject enormous particle jets, perpendicular to the galactic disk, which could act as strong linear accelerators."

Of gamma-ray bursts he says, "Some GRBs are thought to be collapses of supermassive stars - hypernova - while others are thought to be collisions of black holes with other black holes or neutron stars. Both types produce brief but intense blasts of radiation."

The massive fireballs move away from the explosion at nearly the speed of light, releasing most of their energy as gamma rays. The fireballs that give rise to this radiation might also accelerate particles to very high energies through a jet mechanism similar to that in AGNs, although compressed into a much smaller volume.

Accelerated protons in a GRB's jets should interact with the intense gamma-ray background and strong magnetic fields to produce neutrinos with energies about five percent of the proton energy, together with much higher-energy neutrinos near the end of the acceleration process.

Neutrinos come in three different types that change and mix as they travel to Earth; the total flux can be estimated from the muon neutrinos that IceCube concentrates on. The muons these neutrinos create can travel up to 10 kilometers through the Antarctic ice. Thus many neutrino interactions occur outside the actual dimensions of the IceCube array but are nevertheless visible to IceCube's detectors, effectively enlarging the telescope's aperture.

"The way we search for GRB neutrinos is that we build a huge detector and then we just watch and wait," says Klein. "When it comes to detecting neutrinos, size really does matter."

IceCube watches with its over 5,000 DOMs, digital optical modules conceived, designed, and proven by Berkeley Lab physicists and engineers, which detect the faint light from each passing muon. Scientists can rely on their remarkable dependability to wait as long as necessary. Almost no failures occurred after the DOMs were installed; 98 percent are working perfectly and another one percent are usable. Now frozen in the ice, they will never be seen again.

IceCube records a million times more muon tracks moving downward through the ice than upward, mainly debris from direct cosmic-ray hits on the surface or secondary products of cosmic-ray collisions with Earth's atmosphere. Muons moving upward, however, signal neutrinos that have passed all the way through Earth. When the telescope is searching for bright neutrino sources in the northern sky, the planet makes a marvelous filter.

Zeroing in on gamma-ray bursts
A network of satellites circles the globe and reports almost 700 GRBs each year, which readily stand out from the cosmic background. They're timed, their positions are triangulated, and the data are distributed by an international group of researchers. Some blaze for less than two seconds and others for a few minutes. Neutrinos they produce should arrive at IceCube during the burst or close to it.

"IceCube's precision timing and charge resolution, plus its large size, allow it to precisely determine where a neutrino comes from - often to within one degree," says Lisa Gerhardt of Berkeley Lab, whose research has focused on detecting ultra-high-energy neutrino interactions. Indeed, a GRB neutrino should send a muon track through the ice with an angular resolution of about one degree with respect to the GRB's position in the sky.

IceCube researchers sifted through data on 307 GRBs from two periods in 2008 and 2009 when IceCube was still under construction, looking for records of muon trails coincident in time and space with GRBs. (Forty strings, with 60 DOMs each, had been installed by 2008, and 59 strings by 2009.

The finished IceCube has 86 strings.) The fireball model predicted that when the expected flux from all the samples had been summed, at least 8.4 related muon events would be found within 10 degrees of a GRB during the seconds or minutes when it was blazing brightly.

"Different calculations of the neutrino flux from GRBs are based on slightly different assumptions about how the neutrinos are produced and on uncertainties such as how fast the fireball is moving toward us," says Klein. "Among the published predictions, the lowest estimate of neutrino production is about a quarter of what the fireball model predicts. That's barely consistent with our zero observations."

Says Halzen, "After observing gamma-ray bursts for two years, we have not detected the telltale neutrinos for cosmic ray acceleration."

If it's likely that GRBs aren't up to the task of accelerating cosmic rays to ultra-high-energies, what are the options? Klein points to a salient fact about natural accelerators: a small, rapidly spinning object must accelerate particles very rapidly; this requires an extremely energy-dense environment, and there are many ways the particles could lose energy during the acceleration process.

"But remember the other popular model of ultra-high-energy cosmic rays, active galactic nuclei," says Klein. "GRBs are small, but AGNs are big - great big accelerators that may be able to accelerate particles to very high energies without significant loss."

Are AGNs the real source of the highest-energy cosmic rays? IceCube has looked for neutrinos from active galactic nuclei, but as yet the data sets are not sensitive enough to set significant limits. For now, IceCube has nothing to say on the subject - beyond the fact that the fireball model of GRBs can't meet the specs.

Related Links
Lawrence Berkeley National Laboratory
Stellar Chemistry, The Universe And All Within It




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
Detection of cosmic effect may bring universe's formation into sharper focus
Princeton NJ (SPX) Mar 21, 2012
The first observation of a cosmic effect theorized 40 years ago could provide astronomers with a more precise tool for understanding the forces behind the universe's formation and growth, including the enigmatic phenomena of dark energy and dark matter. A large research team from two major astronomy surveys reports in a paper submitted to the journal Physical Review Letters that scientists ... read more


STELLAR CHEMISTRY
ORNL process improves catalytic rate of enzymes by 3,000 percent

Hot new manufacturing tool: A temperature-controlled microbe

Policies, learning-by-doing played important role in reducing ethanol costs

Hawaii plans biorefinery

STELLAR CHEMISTRY
Robots guard S. Korea prison inmates

Robotic cats, a kitten mummy and a major UK vet gathering

Real-life scientific tail of the first 'electrified snail'

Estonian robots boost global online clothing market

STELLAR CHEMISTRY
British engineering firm creates 1,000 wind farm jobs

Cape Wind picks contractors for wind farm

Reducing cash bite of wind power

GDF SUEZ, VINCI, CDC Infrastructure and AREVA mobilized for offshore wind power

STELLAR CHEMISTRY
Ford says to build new, multi-million plant in China

Renault set to build cars in China with Dongfeng: source

Skoda Auto posts record sales with boost from China, India

China's auto sales fall 3.4% in first quarter

STELLAR CHEMISTRY
Nature's billion-year-old battery key to storing energy

Two years after BP oil spill, disaster not over

Sensus FlexNet Manages Chattanooga's New Smart Municipal Lighting

McCormick Achieves Net-Zero Energy Use with Constellation Energy

STELLAR CHEMISTRY
Candu applies to build Turkey nuclear plant

RWE joins rival E.ON in suing Germany over nuclear exit

Armenia extends life of Soviet-era nuclear reactor

Bulgaria no-confidence vote over axed nuclear deal aborts

STELLAR CHEMISTRY
Nearly 50,000 Clean Energy Jobs in 42 States Seen in Q1 2012 Projects

Australia's emissions on the rise

Renewable Resources Launches Operations in North America During Tartan Week 2012

NSW Government undermines election promise on renewable energy

STELLAR CHEMISTRY
Eight native Mexicans shot dead defending forest

DMCii's detailed satellite imagery helps Brazil stamp out deforestation as it happens

UCSB Study Shows Forest Insects and Diseases Arrive in U.S. Via Imported Plants

Russia decodes ancient dawn redwood DNA


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement