Solar Energy News  
OUTER PLANETS
Why Uranus and Neptune are different
by Staff Writers
Bern, Switzerland (SPX) Feb 05, 2020

File images by Hubble of Uranus and Neptune (left/right)

Uranus and Neptune are the outermost planets of the solar system. In size, possibly bulk composition, and their large distance from the Sun they are similar and clearly segregated from the inner terrestrial planets and the gas giants Jupiter and Saturn.

"However, there are also striking differences between the two planets that require explanation," says Christian Reinhardt, who studied Uranus and Neptune together with Alice Chau, Joachim Stadel and Ravit Helled, all PlanetS members working at the University of Zurich, Institute for Computational Science. "For example, Uranus and its major satellites are tilted about 97 degrees into the solar plane and the planet effectively rotates retrograde with respect to the Sun." clarifies Joachim Stadel.

Also, the satellite systems are different. Uranus' major satellites are on regular orbits and tilted with the planet, which suggests that they formed from a disk, similar to Earth's Moon. Triton instead, Neptune's largest satellite, is very inclined and therefore most likely a captured object. Finally, they could also be very different in terms of heat fluxes and internal structure.

Similar Formation - Different Collisions
"It is often assumed that both planets formed in a similar way," explains Alice Chau. This would readily explain their very similar masses, mean orbital separation from the Sun and possibly composition. But where do the differences come from? Since impacts are common during the formation and early evolution of planetary systems a giant impact was proposed as the origin of this dichotomy. But prior work either only investigated impacts on Uranus or was limited due to strong simplifications in the impact calculations.

For the first time, the team of scientists at the University of Zurich investigated a range of different collisions on both planets using high resolution computer simulations. Starting with very similar pre-impact Uranus and Neptune they showed that an impact of a body with 1-3 Earth masses on both planets can explain this dichotomy.

In the case of Uranus, a grazing collision can tilt the planet but does not affect the planet's interior. On the other hand, a head-on collision for Neptune strongly affects the interior but does not form a disk, and is therefore consistent with the absence of large moons on regular orbits. Such a collision, which remixes the deep interior, is supported by the larger observed heat flux of Neptune.

"We clearly show that an initially similar formation pathway to Uranus and Neptune can result in the dichotomy observed in the properties of these fascinating outer planets," Ravit Helled summarizes. Future NASA and ESA missions to Uranus and Neptune can provide new key constraints on such a scenario, improve our understanding of the formation of the solar system, and provide a better understanding of exo-planets in this mass regime.

Research Report: "Bifurcation in the History of Uranus and Neptune: The Role of Giant Impacts"


Related Links
NCCR
The million outer planets of a star called Sol


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OUTER PLANETS
Seeing stars in 3D: The New Horizons Parallax Program
Laurel MD (SPX) Jan 30, 2020
Have a good-sized telescope with a digital camera? Then you can team up with NASA's New Horizons mission this spring on a really cool - and record-setting - deep-space experiment. In April, New Horizons, which by then will be more than 46 times farther from the Sun than Earth, nearing 5 billion miles (8 billion kilometers) from home, will be used to detect "shifts" in the relative positions of nearby stars as compared with the way they appear to observers on Earth. The technique is called pa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Vast amounts of valuable energy, nutrients, water lost in world's fast-rising wastewater streams

UCF researchers work on project to develop cleaner-burning, renewable fuels

New way of recycling plant-based plastics instead of letting them rot in landfill

Ecofriendly catalyst for converting methane into useful gases using light instead of heat

OUTER PLANETS
NASA contracts Maxar to supply robotic arm for lunar lander

Northrop Grumman Remotec and Kinova Robotics sign distribution agreement for robotic manipulator

NASA funds demonstration of assembly and manufacturing in space

Progressing towards assuredly safer autonomous systems

OUTER PLANETS
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

OUTER PLANETS
German car sales plunge as new pollution rules bite

Hyundai suspends domestic production over China outbreak

UK to ban new petrol car sales from 2035

Tesla stock zooms as carmaker marks earnings 'turning point'

OUTER PLANETS
Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions

Making high-temperature superconductivity disappear to understand its origin

Nonflammable electrolyte for high-performance potassium batteries

New electrode design may lead to more powerful batteries

OUTER PLANETS
GE Hitachi Nuclear Energy and CEZ signs small modular reactor tech deal with Czech Republic

Framatome signs contracts with Tennessee Valley Authority

GE Hitachi Nuclear Energy begins NRC licensing process for BWRX-300 Small Modular Reactor

Molecule modification could improve reprocessing of spent nuclear fuel

OUTER PLANETS
New research could aid cleaner energy technologies

ECB's Lagarde warns of 'danger of doing nothing' on climate

Climate crisis spawns high tide of greenwashing

Thunberg, Trump to offer competing visions at climate-focused Davos

OUTER PLANETS
Trees struggle when forests become too small

Pygmy chief arrested for destroying forest in DR Congo park

Some trees respond to weight increases by thickening their stems

Yanomami leader pleads with world to save Amazon from Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.