Solar Energy News  
IRON AND ICE
Why are comet heads green - but not their tails?
by Crystal Koe for MIT News
Boston MA (SPX) Feb 01, 2022

Caption:Comet C/2014 Q2 Lovejoy.

In a global collaboration, a team of researchers recently proved a 90-year-old theory on why comets' heads, but never the tails, are green.

The scientific explanation, published in PNAS on Dec. 21, has to do with the way the molecule dicarbon (C2) gets blown apart by sunlight. The other part of the story lies in an accidental discovery and a love of spectroscopic perturbations, passed from a recently retired professor to another generation of scientists.

When molecules misbehave
As a graduate student at MIT in the lab of Robert W. Field, Jun Jiang PhD '17 was studying the molecule acetylene by exciting it with a high-power frequency-tunable UV laser. As the acetylene blew apart, one of the resulting molecules, C2, emitted light from several highly excited states.

One of these high-energy states, the C1ng state of C2, showed an irregular vibrational energy level structure and was strongly perturbed by another mysterious electronic state. In other words, Jiang noticed that the carbon-carbon bond in the dicarbon C state vibrates in a highly unusual manner not readily explained, in some ways like a child throwing a tantrum for no apparent reason.

Introductory classes in quantum mechanics teach a model system of how molecules are supposed to act or react in various situations. "Perturbations are deviations that are so large, spectroscopists often give up and label the observed spectra of the molecule as 'strongly perturbed,'" says Jiang, now a researcher at Lawrence Livermore National Laboratory and a co-author of the paper.

According to Field, even physicist Gerhard Herzberg, who all but created the study of small molecule spectroscopy and originated the proposal of why comet's tails are never green, would usually set perturbations aside "for future study" in his research.

"I started my career dealing with Herzberg's garbage," says Field, professor of chemistry post-tenure at MIT who also co-authored the paper. Field's interest in the "bad behavior" of molecules began over 40 years ago with deviations in carbon monoxide. "When molecules misbehave, it can lead to great insight."

The valence-hole concept
The perturbations in the C state of C2 led researchers to more than what was previously known about the molecule's electronic structure, a concept invented by quantum chemists to describe the complex, many-body interactions among the electrons and nuclei in the molecule.

"At MIT, we discovered that the source of these systematic perturbations in C2 is a new phenomenon that we call 'valence-hole electron configurations,'" says Field.

Despite the simplicity of its chemical composition, dicarbon possesses a surprisingly intricate electronic structure, which manifests strident anomalies in energy level patterns. These signs of "spectroscopic perturbations" are far more numerous and complex than those found in other simple, textbook-featured diatomic molecules, such as CO, N2, and O2.

"The perturbations caused by these special, unexpectedly stable valence-hole configurations profoundly affect the photodissociation and predissociation properties of C2, which, as we show in our PNAS paper, determine how long C2 molecules survive on a comet before being destroyed by ultraviolet radiation in sunlight," says Field. "Perturbations, predissociation, and photodissociation are three spectroscopic arcanae that explain the mystery of the color difference between the head and tail of a strikingly visible comet."

These insights were crucial to the solution of an almost-century-old puzzle that Professor Timothy W. Schmidt of the University of New South Wales and lead author of the paper was investigating on the other side of the world. Arriving at similar conclusions about the excited C state of C2, Schmidt reached out to Field, leading to the first time in history scientists observed the diagnostic details of this chemical interaction, theorized by Herzberg in the 1930s.

Putting Humpty together again
After seven years in the Field research group, Jiang has learned to embrace a curiosity-guided approach to research. "Bob always challenged us to look beyond the conventional expectations about how a molecule should behave. There can be beautiful stories to learn," says Jiang.

The stories from this discovery reach even further than C2. Studies have shown the importance of the valence-hole state in dinitrogen, but the high energy of this state in N2 makes a more complete spectroscopic investigation difficult. As Jiang's accidental discovery determined that spectra for the valence-hole states of dicarbon are more easily obtained than for other related molecules, C2 can serve as a model for understanding the disruptive impact of valence-hole states in general.

"Perturbations break the regular Herzbergian pattern, and theory based on the valence-hole concept puts the broken pieces back together," says Jiang, whose current work compares the idea to achieving what was impossible in the Humpty Dumpty nursery rhyme.

Perhaps children's tales have more in common with chemical breakthroughs than we may think. If unexpected deviations lead to deeper understanding of a subject's nature, we might say that misbehavior is simply misunderstood behavior.

Molecules, like children, "act out" for reasons not readily obvious. But once we identify the cause, the pieces fit together to tell a more complete story.

As Field says, "Nature leaves a breadcrumb trail of insights through perturbations." We can reap those insights if we follow where curiosity leads.

Research Report: "Photodissociation of dicarbon: How nature breaks an unusual multiple bond"


Related Links
Department of Chemistry
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Solar Orbiter catches a second comet by the tail
Paris (ESA) Jan 26, 2022
For the second time in its mission so far, the ESA/NASA Solar Orbiter spacecraft has flown through the tail of a comet. Predicted in advance by astronomers at University College London, UK, the spacecraft collected a wealth of science data that now awaits full analysis. For a spacecraft designed to conduct unique studies of the Sun, Solar Orbiter is also making a name for itself exploring comets. For several days centred on 1200-1300 UT on 17 December 2021, the spacecraft found itself flying throu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
The path to renewable fuel just got easier

Reducing methane emissions at landfills

LSU chemists unlock the key to improving biofuel and biomaterial production

Getting hydrogen out of banana peels

IRON AND ICE
Northrop Grumman to Develop Prototype Artificial Intelligence Assistant

People prefer interacting with female robots in hotels

Former NASA official starts company to put robotic spacecraft in orbit

Kirigami robotic grippers are delicate enough to lift egg yolks

IRON AND ICE
Wind powers change in England's industrial heartland

Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

IRON AND ICE
Hybrid car sales catch up to diesel in Europe

Paris gives 6-month delay for new crackdown on polluting cars

Tesla reports record profit, sees more supply chain woes in 2022

Bentley says first luxury electric car due 2025

IRON AND ICE
Superconductivity on the edge

High-strength and high energy storage capacity

Power at sea: towards high-performance seawater batteries

Portugal wants to hunt for lithium deposits

IRON AND ICE
Atlanta to host key SMR and Advanced Reactor event in May

Finland nuclear reactor runs into new delay

Brussels weathers backlash over calling gas and nuclear sustainable

The Future of SMRs and ARs: Off-Grid Market Applications

IRON AND ICE
US household air conditioning use could exceed electric capacity in next decade due to climate change

Risk appetite of banks for small merchant renewable energy plants remains low

EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

IRON AND ICE
Kenya under fire over calls to 'weaken' forest protections

Deforestation in Brazilian Amazon hits January record

More than 9,000 tree species still undiscovered: study

Future forests will have smaller trees and soak up less carbon, study suggests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.