Solar Energy News  
ICE WORLD
Wind-blown Antarctic sea ice helps drive ocean circulation
by Staff Writers
New York NY (SPX) Jun 30, 2016


This animation illustrates sea ice thickness (pink) and motion (arrows). Darker blue colors indicate greater salinity in the water below. Image courtesy Ryan Abernathey and Lamont-Doherty Earth Observatory. Watch a video on the research here.

Antarctic sea ice is constantly on the move as powerful winds blow it away from the coast and out toward the open ocean. A new study shows how that ice migration may be more important for the global ocean circulation than anyone realized. A team of scientists used a computer model to synthesize millions of ocean and ice observations collected over six years near Antarctica, and estimated, for the first time, the influence of sea ice, glacier ice, precipitation and heating on ocean overturning circulation.

Overturning circulation brings deep water and nutrients up to the surface, carries surface water down, and distributes heat and helps store carbon dioxide as it flows through the world's oceans, making it an important force in the global climate system. The scientists found that freshwater played the most powerful role in changing water density, which drives circulation, and that melting of wind-blown sea ice contributed 10 times more freshwater than melting of land-based glaciers did.

A vital contributor to the process, the scientists discovered, was the seasonal migration of the ice, which is largely driven by winds. If the sea ice were instead forming and melting in the same place, there would be no net effect.

"If you were to turn off these winds and eliminate that pathway for moving sea ice away from Antarctica, you would probably significantly reduce the strength of the overturning circulation," said lead author Ryan Abernathey, an oceanographer at Columbia University's Lamont-Doherty Earth Observatory.

The study, published this week in the journal Nature Geoscience, uses a sophisticated approach to examine on the complex problem of what is happening down under the ice, where direct observations are hard to come by. It provides new insight into the basic physics of the ocean that may be critical for answering future questions about climate change, such as how loss of sea ice or changing winds could affect global ocean circulation, said Abernathey.

"Everyone is asking, is sea ice expanding or contracting? We're coming at it from a different perspective: What does sea ice do to the underlying ocean?" Abernathey said.

When sea ice forms around the edges of Antarctica each winter, the salt in the ocean water doesn't freeze; it stays behind. That makes the water near the coast much saltier and therefore denser than water off shore. Denser water sinks, and in doing so pushes less dense water up, driving circulation. Meanwhile, as sea ice melts farther out in the open ocean, it deposits its less-dense freshwater, moving denser water down.

Scientists have known for some time that changes in water density, particularly the sinking of cold, saline water, contribute to the ocean's "abyssal circulation," the deepest, coldest branch of the ocean conveyor belt, which moves cold Antarctic water northward along the ocean bottom. What has been less well understood is the role salinity might play in the "upper circulation," which carries mid-depth water up to the surface in the Southern Ocean and eventually toward the tropics.

Using an analysis technique called water-mass transformation, the scientists were able to quantify the rate at which ice freezing and melt contribute to the upper circulation by making water near the coast denser and water in the open ocean lighter.

Ocean circulation is critical to the climate system because it distributes heat and helps store carbon dioxide in the deep ocean. Major climate changes in the past, including glacial periods, are believed to have involved changes in ocean circulation. To understand how circulation may be changing today, the next steps will be to look more closely at how salinity and wind speeds changed in the past, Abernathey said.

"This work shows really clearly that Antarctic sea ice plays a crucial role in the circulation of the world's oceans," said coauthor Paul Holland of the British Antarctic Survey.

"We have known for many years that the freezing of Antarctic sea ice in winter is responsible for forming the very deepest waters in the world oceans, but this study shows that melting the ice in summer also governs the formation of shallower waters. This advance has only been made possible by the state-of-the-art computer model used in this study, which assimilated millions of ocean observations."

Other coauthors of the paper are Ivana Cerovecki, Matt Mazloff and Lynne Talley of Scripps Institution of Oceanography; and Emily Newsom of the University of Washington. The research received funding from the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Earth Institute at Columbia University
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Research shows Antarctic lakes are a repository for ancient soot
Washington DC (SPX) Jun 15, 2016
Remote lakes in a perpetually ice-free area of Antarctica show not only the chemical signature of ancient wildfires, but also some much more recent evidence of fossil-fuel combustion, according to National Science Foundation (NSF)-funded research published this week in the journal Geophysical Research Letters. The research is based on examination of the levels of dissolved black carbon (DB ... read more


ICE WORLD
Solar exposure energizes muddy microbes

Chemists find new way to recycle plastic waste into fuel

Bioenergy integrated in the bio-based economy crucial to meet climate targets

New 3-D printed polymer can convert methane to methanol

ICE WORLD
Robotic vehicle's soft engine provides torque without bending

Firm unveils 'robot dog' that does the dishes

Robotic motion planning in real-time

Computers eyeing the jobs of sports camera operators

ICE WORLD
More wind power added to French grid

How China can ramp up wind power

Scotland investing more in offshore wind

Gamesa, Siemens join forces to create global wind power leader

ICE WORLD
Record VW payout in US 'dieselgate' settlement

Ready for the car with a licence to kill

Driverless cars: Who gets protected

VW to pay $15 bn to settle emissions scandal in US: report

ICE WORLD
New electron microscope method detects atomic-scale magnetism

Titan shines light on high-temperature superconductor pathway

Next-generation fluorescent and LED lighting thanks to new phosphor

AMA Report Affirms Human Health And Environmental Impacts From LEDS

ICE WORLD
Expert says most nuclear fuel melted at Fukushima nuclear plant

Mitsubishi joins EDF in bid to save reactor builder Areva

EDF nuclear project 'more difficult' after Brexit: Sapin

Putin: Russia, China to Step Up Nuclear Energy Cooperation

ICE WORLD
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

ICE WORLD
NASA Maps California Drought Effects on Sierra Trees

Where do rubber trees get their rubber

Significant humus loss in forests of the Bavarian Alps

Botanical diversity unraveled in a previously understudied forest in Angola









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.