![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Berlin, Germany (SPX) Feb 25, 2022
Tandem cells made of silicon and perovskite are able to convert the broad energy spectrum of sunlight into electrical energy more efficiently than the respective single cells. Now, for the first time, two teams from HZB and ISFH Hameln have succeeded in combining a perovskite top cell with a so-called PERC/POLO silicon cell to form a tandem device. This is an important achievement, since PERC silicon cells on p-type silicon are the "workhorse" of photovoltaics, with a market share of about 50% of all solar cells produced worldwide. They are largely optimised, long-term stable and temperature stable. Therefore, it is particularly interesting for the commercialisation of a perovskite-silicon tandem technology to develop a "perovskite tandem upgrade" for PERC cells. The cooperation took place within the framework of the joint project P3T, which is funded by the Federal Ministry of Economics and coordinated by HZB. The team at ISFH used an industry-compatible PERC process for the backside contact of the silicon bottom cells. On the front side of the wafer, another industrialisable technology was used, the so-called POLO contact, which was adapted here for the small-area proof of concept cells.
Perovskite expertise at HZB The first perovskite PERC/POLO tandem cells produced in this way achieve an efficiency of 21.3% on an active cell area of about 1 cm. This efficiency is thus still below the efficiency of optimised PERC cells in this feasibility study. "However, initial experimental results and optical simulations indicate that we can significantly improve the performance through process and layer optimisation," explains Dr. Lars Korte, the corresponding author of the study.
PCE estimated at 29,5 % The next steps for further efficiency increases are already clear: Dr. Silvia Mariotti from the HZB team had identified the coverage of the silicon surface by the perovskite as potential for improvement: "For this purpose, one could adapt the surface of the silicon wafers and thus quickly increase the efficiency to about 25%," says Mariotti. This is then already significantly higher than the efficiency of PERC single cells.
Research Report: "Monolithic Perovskite/Silicon Tandem Solar Cells fabricated using industrial p-type POLO/PERC Silicon Bottom Cell Technology"
![]() ![]() Increasing efficiency in two-terminal tandem solar cells Bellingham WA (SPX) Feb 18, 2022 Solar photovoltaics (PV) is a major stepping-stone in our transition towards a sustainable energy economy. The International Renewable Energy Agency (IRENA) roadmap suggests that by 2050, electricity generation from PV should reach 43 percent of the total installed power capacity. This can be turned into reality by reducing the cost of PV systems and increasing the efficiency of solar cells, which would enable large-scale installations of compacts PV. To this end, a recent study published in the J ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |