Solar Energy News  
SOLAR DAILY
World's first solar fuels reactor for night passes test
by Staff Writers
Almeria, Spain (SPX) Feb 27, 2018

CONTISOL was tested at Cologne, Germany using simulated 'suns', rather than an actual solar field, and the storage and heat exchanger was also simulated, because the reactor itself is the innovation being tested

International solar thermal energy researchers have successfully tested CONTISOL, a solar reactor that runs on air, able to make any solar fuel like hydrogen and to run day or night - because it uses concentrated solar power (CSP) which can include thermal energy storage.

The promise of solar fuels is that we could have zero carbon fuels like hydrogen without the climate-damaging carbon emissions it takes to make hydrogen from natural gas today, so perfecting solar reactors is key to a 100% clean energy future.

Instead of burning a fossil fuel for the heat needed to drive the thermal chemistry process, for chemical reactions like splitting H2 (hydrogen) from H2O, scientists have been testing various kinds of reactors heated by the thermal form of solar, CSP, which uses mirrors to concentrate solar flux on a receiver.

To attain zero-carbon heat for thermochemical reactions - which can operate at temperatures as high as 1,500 C - experts view the direct heat of CSP as a more efficient clean energy source than electricity from PV or wind.

There will be an unlimited supply of sunlight over centuries, and no climate consequences when thermochemistry is driven by solar energy. The only disadvantage compared to burning fossil energy, is that the sun goes down at night.

Night solar through CSP
Now, a group of scientists at the German Aerospace Center (DLR) supported by the Aerosol and Particle Technology Laboratory of CPERI/CERTH Greece have built and tested a new solar reactor design that includes storage so it can provide round-the-clock heat like the current fossil-fired method, but without the emissions.

Their paper, Fabrication and testing of CONTISOL: A new receiver-reactor for day and night solar thermochemistry was published in December 2017, at Applied Thermal Engineering.

"Solar reactors in the past have had the problem of what you do at night when you don't have sun, or even when clouds go by," said the paper's lead author, Justin Lapp, formerly of DLR, and now Assistant Professor of Mechanical Engineering at the University of Maine.

Lapp explained that when the temperature drops, the reaction could need to be halted or the flow rate of the reactants slowed, reducing the amount of products that you get out. If the reactor shuts down at night it cools off, not just wasting residual heat, but starting over from nothing next morning.

How it works
"So the main idea of CONTISOL was to build two reactors together," he said. "One where sunlight is directly doing chemical processing. The other side for storing energy. In the chemical channels the high temperatures of the material drive the chemical reaction and you get a change from reactants to products within those channels, and in the air channels cooler air goes in the front and hotter air comes out the back."

By combining storage capabilities with a direct solar thermochemical reactor, they get the best of both worlds, stable temperatures round the clock but also the most efficient heat source to perform reactions because it's direct, so "you don't have as many losses with multiple steps between the sunlight and the chemistry that's happening."

CONTISOL uses an open air receiver, based on the volumetric air receiver operated at its test solar tower at Julich by DLR (Deutsches Zentrum fur Luft- und Raumfahrt), which can heat air to 1,100 C. There an open air receiver takes air from the atmosphere and pulls it through small channels in a monolithic material.

"Ours is a volumetric air receiver like this one," said Lapp. "The center is an extruded monolith; a large cylinder with many smaller rectangle channels. Every other row of channels is used for chemistry or for passing air through the monolith. These channels are open to the front to allow sunlight to go in and heat up this monolithic material."

The original test used silicon carbide for the multichannel receiver, but the scientists plan to try Inconel, a harder metal alloy for the receiver.

"Silicon carbide is a little bit difficult to manufacture because it cannot be machined as well as a metal. So getting very tight tolerances can be tough. It's not too expensive but it is not the easiest material to work with in manufacturing," he related.

Temperatures between 800-900 C are needed to rearrange water or hydrocarbon molecules into most solar fuels, so that was the temperature goal. The prototype reactor successfully operated at 850 C at lab-scale: 5kW.

CONTISOL was tested at Cologne, Germany using simulated 'suns', rather than an actual solar field, and the storage and heat exchanger was also simulated, as the reactor itself is the innovation.

"This scale is a scientific prototype simply for us to understand how to control it. It wouldn't be commercialized at 5 kW,"he said. "Commercially, 1-5 MW would be about the smallest for industrial-scale reactors, and they could scale to 100 MW or even larger."

"In our case we are doing methane reforming as an example. But it's not tied to methane, it could make any number of solar fuels. One interesting one is hydrogen production from sulphuric acid as a cycling material. When you evaporate sulphuric acid at about 400 C into steam and SO3, it is not corrosive, so you can even use stainless steel components."

Why air as the heat transfer medium?

Transferring the heat in air opens options for high efficiency storage systems like thermochemical storage or latent heat storage in copper or copper alloys which melt between 900 - 1100 C.

The advantages of air are that it is accessible, freely available and abundant. Air is not corrosive, and any leaks would be inconsequential, so it doesn't need to be contained in a closed loop, he explained.

"It can pull air in just out of the atmosphere and then runs it through the heat exchanger to store the heat. And then it can vent that air out once it is cool."

With other heat transfer materials, "you have to ensure the system is sealed everywhere and if you lose some you must buy more to make it up. With air you don't have that problem."

Unlike many heat transfer media, which can change their molecular structure at high temperatures, air remains stable at high temperatures.

However, an air receiver would seem to rule out chemical reactions using liquids like water. Not so, said Lapp.

"There are very few liquids that stay liquid in the 600 to 800 degree range that we are interested in," he explained. "Most of the chemical reactions we deal with are either with gases like methane or with solid materials like metal oxide reactions.

Even splitting water is done at so high a temperature that water is not liquid, but steam.

"Water coming in already as steam makes it a lot easier to design the receiver. You don't have the problems of steam expansion while its boiling. Its easier to keep it tight for steam than liquid," he said. So to ready water for splitting, it would first be boiled to steam right in the tower.

"In these high temperature solar reactors, the center spot on the tower where all the mirrors focus is best for high temperature chemistry. We get very high flux at the center for getting to 600 - 800 C. But there's always a bunch of wasted radiation around the outside; there's still enough light to heat to 200 - 300 C, not enough for chemistry but plenty to evaporate water to steam," Lapp pointed out.

The earliest thermochemical reactors were nuclear

Research into using reactors to perform thermochemistry originated in the '60s with nuclear power, but was abandoned once researchers were unable to get nuclear reactions to reach the temperatures needed. Very few nuclear reactor designs were able to reach 800 C.

But more recently, solar reactors have taken up this research into thermochemistry, based on solar heat rather than nuclear. They are already reaching temperatures between 800 C and 1500 C at the pilot scale, using highly concentrated sunlight.

Solar reactors don't include the large power block of a CSP plant, which is a full thermal power station producing electricity (except with heat supplied by the sun). Solar reactors don't need the big turbine or generator for making electricity, but only consist of a tower, a solar field, a receiver and the reaction chamber. To this, CONTISOL adds a storage system, transferring the heat from the air into the heat exchanger.

To produce hydrogen for example, A CONTISOL-type solar reactor would comprise a solar field of heliostats (mirrors), a tower, an air receiver and the heat storage. The mirrors would reflect sunlight into the air receiver; heating air in two sets of small chambers directing air to either the reaction chamber for thermochemistry reaction, or to the heat storage.

The hydrogen could then be used in more reactions - if you'd stored it to keep it hot overnight - or you would pipe it out from the reaction chamber in the tower to be compressed, fill a tank, and drive it off.

Research Report: Fabrication and testing of CONTISOL: A new receiver-reactor for day and night solar thermochemistry


Related Links
SolarPACES
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New clean energy targets put South Australia on the world map
Melbourne, Australia (SPX) Feb 27, 2018
The new renewable energy and energy storage targets announced by the South Australian Government are genuinely world-class ambitions that help to put the state's clean energy achievements on the world map, the Clean Energy Council. Clean Energy Council Chief Executive Kane Thornton said the South Australian Government had shown that it is a national and international leader in the uptake of renewable energy and the transition of its energy sector. "The energy storage target in particular is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

How biofuels from plant fibers could combat global warming

SOLAR DAILY
Brothers look to harness artificial intelligence for greater good

Google Assistant adds more languages in global push

New stretchable electronic skin sensitive enough to feel ladybug footsteps

Artificial intelligence poses questions for nature of war: Mattis

SOLAR DAILY
World's first floating wind farm put to the test

New wind farm construction starts in Italy

Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

SOLAR DAILY
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Germany cleared for greener public transit

SOLAR DAILY
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

SOLAR DAILY
Framatome completes purchase of Schneider Electric's instrumentation and control nuclear business

Greenpeace protesters jailed for French nuclear stunt

Austria sues over EU approval of Hungary nuclear plant

Researchers run first tests of unique system for welding highly irradiated metal alloys

SOLAR DAILY
Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

SOLAR DAILY
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.