![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Menlo Park CA (SPX) Apr 07, 2016
The silver electrical contacts that carry electricity out of about 90 percent of the solar modules on the market are also one of their most expensive parts. Now scientists from two Department of Energy national laboratories have used X-rays to observe exactly how those contacts form during manufacturing. The results, reported in Nature Communications, are an important step toward finding cheaper alternatives to silver that don't require toxic lead for processing. "Industry would like to get rid of both silver and lead in this process," said Mike Toney, a distinguished staff scientist at SLAC National Accelerator Laboratory and one of the lead authors of the paper. "One of the goals of this research is to figure out how the contacts are made and use this knowledge to come up with ways to eliminate silver and lead."
Opening a Small Window on an Old Process "Although the process has been around for a long time, it's been impossible to see how the contacts form until now because it happens very fast," Toney said. "Scientists have been debating how this reaction proceeds for many years." To settle the debate, researchers from SLAC and the National Renewable Energy Laboratory (NREL) in Colorado built a simplified version of the industrial furnace at SLAC's Stanford Synchrotron Radiation Lightsource, a DOE Office of Science User Facility. They put sample solar cells into the furnace, quickly heated the samples to the high temperatures used in manufacturing and monitored changes in the chemistry of the contact with an X-ray beam shining into the chamber through a small window.
A Tool for Basic Research and Industry "I won't say we have the full story yet, but this is the first time we actually got some insight into what's happening," said Maikel van Hest, a materials scientist at NREL who led the research. "Prior to this study we were only able to look at the contact before and after heat processing; what happened in between was like a black box. But now we can actually make measurements as the contacts form. This tool will have great impact in the photovoltaic industry as well as in basic research." NREL's Jeremy Fields and SLAC's Mohammed Imteyaz Ahmad were first authors of the paper and played leading roles in carrying out the experiments. Other scientists involved in the research were NREL's Philip Parilla and SLAC's Vanessa Pool, Jiafan Yu and Douglas Van Campen. The research was funded by the DOE's SunShot Initiative, which aims to make solar energy cost-competitive with other forms of electricity by the end of the decade.
Related Links DOE/SLAC National Accelerator Laboratory All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |