![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Groningen, The Netherlands (SPX) Apr 07, 2020
Lead-based perovskites are very promising materials for the production of solar panels. They efficiently turn light into electricity but they also present some major drawbacks: the most efficient materials are not very stable, while lead is a toxic element. University of Groningen scientists are studying alternatives to lead-based perovskites. Two factors that significantly affect the efficiency of these solar cells are the ability to form thin films and the structure of the materials in the solar cells. Therefore, it is very important to investigate in situ how lead-free perovskite crystals form and how the crystal structure affects the functioning of the solar cells. The results of the study were published in the journal Advanced Functional Materials on 31 March. Photovoltaic cells that are based on hybrid perovskites were first introduced in 2009 and rapidly became almost as efficient as standard silicon solar cells. These materials have a very distinctive crystal structure, known as the perovskite structure. In an idealized cubic unit cell, anions form an octahedron around a central cation, while the corners of the cube are occupied by other, larger cations. Different ions can be used to create different perovskites.
Spin coating 'My colleague, Professor Maria Loi, and her research team showed that adding a small amount of this PEA produces a more stable and efficient material,' says Assistant Professor Giuseppe Portale. 'However, adding a lot of it reduces the photovoltaic efficiency.' That is where Portale comes in. Perovskites have been studied for a long time by Professor of Photophysics and Optoelectronics Maria Loi, while Portale developed an X-ray diffraction technique that allows him to study the rapid formation of thin films in real-time during spin-coating from solution. On a laboratory scale, the perovskite films are generally made by spin coating, a process in which a precursor solution is delivered onto a fast-spinning substrate. Crystals grow as the solvent evaporates. At the beamline BM26B-DUBBLE at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, Portale investigated what happens during the tin-perovskite film formation.
Interface 'PEA molecules play an active role in the precursor solution of the perovskites, stabilizing the growth of oriented 3D-like crystals through coordination at the crystal's edges. Moreover, PEA molecules prevent nucleation in the bulk phase, so crystal growth only takes place at the air/solvent interface,' Portale explains. The resulting films are composed of aligned 3D-like perovskite crystals and a minimal amount of 2D-like perovskite, located at the bottom of the film. The addition of low concentrations of the 2D material produces a stable and efficient photovoltaic material, while the efficiency drops dramatically at high concentrations of this 2D material.
Insulator The conclusion of the study is that the formation of this insulating layer must be prevented to achieve a highly efficient and stable tin-based perovskite. 'The next step is to realize this, for example by playing with solvents, temperature or specific perovskite/substrate interactions that can break up the formation of this thick insulating layer.'
Simple Science Summary University of Groningen scientists have now 'watched' how thin films of tin-based perovskite crystals grow. They discovered that in mixtures of 3D and 2D perovskites, the 2D component helps to orient the 3D-like crystals but, at the same time, the 2D perovskite forms an insulating layer that is in contact with the substrate. By breaking up this insulating layer, it should be possible to create more efficient and stable tin-based perovskite solar panels.
Research Report: Mechanism of Crystal Formation in Ruddlesden-Popper Sn-Based Perovskites
![]() ![]() Stable perovskite LEDs one step closer Linkoping, China (SPX) Apr 06, 2020 Researchers at Linkoping University, working with colleagues in Great Britain, China and the Czech Republic, have developed a perovskite light-emitting diode (LED) with both high efficiency and long operational stability. The result has been published in Nature Communications. "Light-emitting diodes based on perovskites are still not sufficiently stable for practical use, but we have brought them one step closer", says Professor Feng Gao, and head of research at the Division of Biomolecular and Or ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |