Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Yale's cool molecules
by Staff Writers
New Haven CT (SPX) Aug 29, 2014


An optical cavity was used to control the wavelength of some of the lasers used for the magneto-optical trap. Image courtesy Michael Helfenbein.

It's official. Yale physicists have chilled the world's coolest molecules. The tiny titans in question are bits of strontium monofluoride, dropped to 2.5 thousandths of a degree above absolute zero through a laser cooling and isolating process called magneto-optical trapping (MOT).

They are the coldest molecules ever achieved through direct cooling, and they represent a physics milestone likely to prompt new research in areas ranging from quantum chemistry to tests of the most basic theories in particle physics.

"We can start studying chemical reactions that are happening at very near to absolute zero," said Dave DeMille, a Yale physics professor and principal investigator. "We have a chance to learn about fundamental chemical mechanisms."

The research is published this week in the journal Nature.

Magneto-optical trapping has become ubiquitous among atomic physicists in the past generation - but only at the single-atom level. The technology uses lasers to simultaneously cool particles and hold them in place. "Imagine having a shallow bowl with a little molasses in it," DeMille explained.

"If you roll some balls into the bowl, they will slow down and accumulate at the bottom. For our experiment, the molecules are like the balls and the bowl with molasses is created via laser beams and magnetic fields."

Until now, the complicated vibrations and rotations of molecules proved too difficult for such trapping. The Yale team's unique approach drew inspiration from a relatively obscure, 1990s research paper that described MOT-type results in a situation where the usual cooling and trapping conditions were not met.

DeMille and his colleagues built their own apparatus in a basement lab. It is an elaborate, multi-level tangle of wires, computers, electrical components, tabletop mirrors, and a cryogenic refrigeration unit. The process uses a dozen lasers, each with a wavelength controlled to the ninth decimal point.

"If you wanted to put a picture of something high-tech in the dictionary, this is what it might look like," DeMille said. "It's deeply orderly, but with a bit of chaos."

It works this way: Pulses of strontium monofluoride (SrF) shoot out from a cryogenic chamber to form a beam of molecules, which is slowed by pushing on it with a laser. "It's like trying to slow down a bowling ball with ping pong balls," DeMille explained.

"You have to do it fast and do it a lot of times." The slowed molecules enter a specially-shaped magnetic field, where opposing laser beams pass through the center of the field, along three perpendicular axes. This is where the molecules become trapped.

"Quantum mechanics allows us to both cool things down and apply force that leaves the molecules levitating in an almost perfect vacuum," DeMille said.

The Yale team chose SrF for its structural simplicity - it has effectively just one electron that orbits around the entire molecule. "We thought it would be best to start applying this technique with a simple diatomic molecule," DeMille said.

The discovery opens the door for further experimentation into everything from precision measurement and quantum simulation to ultracold chemistry and tests of the standard model of particle physics.

The lead author of the paper is John Barry, a former Yale graduate student now at the Harvard-Smithsonian Center for Astrophysics. Other authors of the paper are Yale postdoctoral fellow Danny McCarron and graduate students Eric Norrgard and Matt Steinecker.

.


Related Links
Yale University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
The power of salt
Boston MA (SPX) Aug 28, 2014
Where the river meets the sea, there is the potential to harness a significant amount of renewable energy, according to a team of mechanical engineers at MIT. The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy. In principle, a PRO system would take in river water an ... read more


TECH SPACE
Scientists create renewable fossil fuel alternative using bacteria

VIASPACE Establishes Giant King Grass Research Collaboration With California

Cenex Tank Program assists retailers offering E15

Ceres to Expand Product Development in Sorghum and Sugarcane

TECH SPACE
Magal introducing RoboGuard security system in Israel

'Robo Brain' will teach robots everything from the Internet

Robonaut Gets New Legs as Trio Prepares for Homecoming

Russia's First Exoskeleton to Help Physically Impaired

TECH SPACE
Gwynt y Mor wind farm already making the grade

Real 20 per cent Renewable Energy Target would decimate industry

Scottish marine power a testament of unity, London says

Scottish government approves build of Iberdrola wind farm

TECH SPACE
Ride-sharing could cut cabs' road time by 30 percent

Sweden court accepts receivership for Saab carmaker

France's Peugeot gets approval for China plant: report

China fines Japanese auto parts firms $200 mn for monopoly

TECH SPACE
Copper shines as flexible conductor

Biomimetic photodetector 'sees' in color

Rubber meets the road with new ORNL carbon, battery technologies

Scientists uncover clues to role of magnetism in iron-based superconductors

TECH SPACE
India, Australia set to sign nuclear deal as Abbott visits

Iran answers U.S. sanctions with broad nuclear vision

Australia satisfied on India's nuclear safeguards

Jinxed Finnish nuclear plant to function almost a decade late: Areva

TECH SPACE
Existing power plants will spew 300 billion more tons of carbon dioxide during use

Yale Journal Explores Advances In Sustainable Manufacturing

London carrying energy, climate message to New Delhi

Smartphone-loss anxiety disorder

TECH SPACE
Brazil cracks 'biggest' Amazon deforestation gang

Brazil arrests 8 in Amazon deforestation swoop

World's primary forests on the brink

New analysis links tree height to climate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.