Solar Energy News  
CARBON WORLDS
'Zipping-up' rings to make nanographenes
by Staff Writers
Nagoya, Japan (SPX) Feb 13, 2018

Gray colored balls represent carbon atoms and gray colored sticks represent chemical bonds. Image courtesy ITbM, Nagoya University.

Nanographenes are attracting wide interest from many researchers as a powerful candidate for the next generation of carbon materials due to their unique electric properties. Scientists at Nagoya University have now developed a fast way to form nanographenes in a controlled fashion. This simple and powerful method for nanographene synthesis could help generate a range of novel optoelectronic materials, such as organic electroluminescent displays and solar cells.

Nagoya, Japan - A group of chemists of the JST-ERATO Itami Molecular Nanocarbon Project and the Institute of Transformative Bio-Molecules (ITbM) of Nagoya University, and their colleagues have developed a simple and powerful method to synthesize nanographenes. This new approach, recently described in the journal Science, is expected to lead to significant progress in organic synthesis, materials science and catalytic chemistry.

Nanographenes, one-dimensional nanometer-wide strips of graphene, are molecules composed of benzene units. Nanographenes are attracting interest as a powerful candidate for next generation materials, including optoelectronic materials, due to their unique electric characteristics.

These properties of nanographenes depend mainly on their width, length and edge structures. Thus, efficient methods to access structurally controlled nanographenes is highly desirable.

The ideal synthesis of nanographenes would be a 'LEGO'-like assembly of benzene units to define the exact number and shape of the molecule. However, this direct approach is currently not possible. The team developed an alternative method that is simple and controls the nanographene structure as it forms in three key steps.

First, simple benzene derivatives are assembled linearly, through a cross-coupling reaction. Then, these benzene chains are connected to each other by a palladium catalyst that leads to a molecule with three benzene rings bound together in a flat, triangle-like shape. This process repeats all the way up the chain, effectively zipping up the rings together.

The innovation the team developed was a new way to achieve the middle step that forms the three-ring triangle-like unit that forms the core for further reactions to generate the nanographene molecule.

A classic technique to connect benzene units uses aryl halides as reaction reagents. Aryl halides are aromatic compounds in which one or more hydrogen atoms bonded to an aromatic ring are replaced by halogen atoms such as fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).

This allows benzene to connect at a single point through a process called dimerization, which was discovered by Fritz Ullmann and Jean Bielecki in 1901. However, the Ullmann reaction does not generate nanographenes when using the compound phenylene as the starting material.

The team discovered that using a palladium catalyst enabled connections between benzene units at two points, providing the triangle-like structure of three benzene rings. A triphenylene moiety is formed in the center of each group of rings.

"This discovery was quite accidental," says Designated Associate Professor Kei Murakami, a chemist at Nagoya University and one of the leaders of this study.

"We think that this reaction is the key of this new approach for nanographene synthesis."

The team then utilized a process called the Scholl reaction to repeat this process and successfully synthesize a nanographene molecule. The reaction proceeds in a similar manner to benzene rings being zipped up, with the triphenylene moiety acting as the core.

"One of the most difficult parts of this research was obtaining scientific evidence to prove the structures of the triphenylene derivative and nanographene molecules," says Yoshito Koga, a graduate student who mainly conducted the experiments.

"Since no one in our group has ever handled triphenylenes and nanographenes before, I was conducting the research through a 'trial and error' manner.

"I was extremely excited when I first saw the mass spectrometry signal of the desired molecule to reveal the mass of the molecule through MALDI (Matrix Assisted Laser Desorption/Ionization), which indicated that we had actually succeeded in making nanographene in a controlled fashion."

The team had already succeeded in synthesizing various triphenylene derivatives, such as molecules including 10 benzene rings, naphthalene (a fused pair of benzene rings), nitrogen atoms, and sulfur atoms. These unprecedented triphenylene derivatives could potentially be used in solar cells.

"The approach for creating functional molecules from simple benzene units will be applicable to the synthesis of not only nanographene, but also to various other nanocarbon materials," says Murakami.

"Nanographenes are bound to be useful as future materials," says Professor Kenichiro Itami, director of the JST-ERATO Itami Molecular Nanocarbon Project.

"We hope that our discovery will lead to the acceleration of applied research and advance the field of nanographene science."

This article "Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization" by Yoshito Koga, Takeshi Kaneda, Yutaro Saito, Kei Murakami and Kenichiro Itami is published online in Science. DOI: 10.1126/science.aap9801


Related Links
Institute of Transformative Bio-Molecules (ITbM), Nagoya University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Interstellar fullerenes may help find solutions for Earthly matters
Kazan, Russia (SPX) Feb 05, 2018
Fullerenes were first discovered by Harry Kroto in the 1970s, a feat for which he and his colleagues received a Nobel Prize in Chemistry. Recently, they have been found in winds emitted by red giants and in interstellar medium. Fullerenes are very potent antioxidants and are used in antiviral medications. In particular, fullerenes with anti-HIV properties have also been discovered. Apart from that, they are also used as semiconductors and even high temperature superconductors (if decorated with al ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Calculating the CO2 emissions of biofuels is not enough

Bio-renewable process could help 'green' plastic

To maximize sugarcane harvesting, use the right blade

The making of biorelevant nanomaterials

CARBON WORLDS
Quantum algorithm could help AI think faster

Army researchers develop new algorithms to train robots

Bezos hails Alexa as Amazon profits surge

NIST's superconducting synapse may be missing piece for 'artificial brains'

CARBON WORLDS
Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

Scotland sets up $83 million low-carbon fund

German offshore wind farm closer to powering mainland

CARBON WORLDS
Waymo, Uber end trade secrets theft trial with settlement

Tesla aims to calm fears over Model 3 production

At trial, former Uber CEO seeks to fend off conspiracy talk

Nissan to invest $9.5 billion in China to drive sales

CARBON WORLDS
Clemson researchers blaze new ground in wireless energy generation

Using lithium to reduce instabilities in fusion plasmas

Recycling and reusing worn cathodes to make new lithium ion batteries

Round-the-clock power from smart bowties

CARBON WORLDS
Turkey's first nuclear power plant set for investor shake-up: reports

Thorium reactors may dispose of enormous amounts of weapons-grade plutonium

Framatome continues ramping up production at its Le Creusot site

USA: Framatome to acquire Instrumentation and Control nuclear business of Schneider Electric

CARBON WORLDS
Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

US energy watchdog rejects plan to subsidize coal, nuclear sectors

CARBON WORLDS
FSU researchers: Savanna fires pump Central African forests full of nitrogen

Increased UV from ozone depletion sterilizes trees

Cambodian soldier detained after forest patrol deaths

Plan to protect Indonesian peatlands with aerial mapping wins $1m









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.