Solar Energy News  
SOLAR DAILY
Climate change could mean fewer sunny days for hot regions banking on solar power
by Staff Writers
Princeton NJ (SPX) Oct 08, 2020

Princeton University

While solar power is a leading form of renewable energy, new research suggests that changes to regional climates brought on by global warming could make areas currently considered ideal for solar power production less viable in the future.

Princeton-based researchers recently published in the journal Nature Communications the first study to assess the day-to-day reliability of solar energy under climate change. The team used satellite data and climate models to project how sunlight reaching the ground would be affected as warmer global temperatures alter the dynamics and consistency of Earth's atmosphere.

Their study found that higher surface temperatures - and the resulting increase in the amount of moisture, aerosols and particulates in the atmosphere - may result in an overall decrease in solar radiation and an uptick in the number of cloudy days. Hot, arid regions such as the Middle East and the American Southwest - considered among the highest potential producers of solar energy - were most susceptible to greater fluctuations in sunlight, the researchers found.

"Our results could help in designing better solar power plants and optimizing storage while also avoiding the expansion of solar power capacity in areas where sunlight intermittency under future climate conditions may be too high to make solar reliable," said corresponding author Amilcare Porporato, Princeton's Thomas J. Wu '94 Professor of Civil and Environmental Engineering and the Princeton Environmental Institute (PEI). The research was supported by the Carbon Mitigation Initiative based in PEI.

"To use an academic metaphor, in terms of solar power, semiarid places are now like students who get an A nearly every day," Porporato said. "Now, climate change is disturbing the usual dynamics of the atmosphere and the regularity of the solar radiation reaching the planet's surface. We tried to quantify how much more often those A's could become B's, or even C's, as a result."

Existing research on how solar energy will fare in this irregular future has largely focused on average levels of sunlight, said first author Jun Yin, a researcher at Nanjing University of Information Science and Technology who worked on the paper at Princeton as a postdoctoral research associate with Porporato.

"The novelty of our approach was to point out that in some places there is going to be more uncertainty in day-to-day variability," Yin said. He and Porporato previously reported that climate models underestimate the cooling effect of the daily cloud cycle. They worked on the most recent paper with co-author Annalisa Molini, an associate professor of civil infrastructure and environmental engineering at Khalifa University in the United Arab Emirates.

The researchers' findings were based on probabilistic calculations similar to those used to determine the risk of flooding or drought. The reduced reliability of solar energy is related to the increased variability of atmospheric moisture and aerosols in some arid regions. Higher temperatures hold more moisture and are more turbulent, which favors the formation of clouds and keeps particles in suspension longer, Porporato said.

"Then there is the issue of soils drying, which may be even more important," Porporato said. As temperatures and atmospheric turbulence increase in arid regions such as the Middle East, dry soils potentially lead to greater amounts of dust and atmospheric aerosols that would diminish solar radiation. These trends are in fact already detectable in observations from climate-observation networks, Porporato said.

For the American Southwest, the researchers' findings were less consistent. Some models showed more solar radiation and lower intermittency in the future, while others showed less solar radiation and higher intermittency. These results illustrate the challenge of trying to predict the reliability of solar energy in an uncertain future, Yin said.

"We hope that policymakers and people in the energy industry can take advantage of this information to more efficiently design and manage photovoltaic facilities," Yin said.

"Our paper helps identify efficient solutions for different locations where intermittency could occur, but at an acceptable level," he said. "A variety of technologies such as power storage, or power-operation policies such as smart curtailment, load shaping or geographical dispersion, are promising solutions."

To follow up on their work, the researchers plan to examine climate persistency - specifically, the number of consecutive sunny or cloudy days - which is important for solar power. They also are exploring how clouds could affect the effectiveness of tree planting as a climate mitigation strategy. Trees absorb not only carbon dioxide but also solar energy, which would raise surface temperatures. A resulting increase in cloud coverage could change current estimates of how effective trees would be in reducing atmospheric carbon.

Research Report: "Impacts of solar intermittency on future photovoltaic reliability"


Related Links
Hot, arid regions may see greater fluctuations in sunlight as the climate changes, the researchers reported. They used satellite data and climate model outputs to evaluate the intermittency of solar radiation and the reliability of photovoltaic energy under future climate conditions. They found that arid areas (pink) were more likely to experience a decrease in average solar radiation - and thus the reliability of solar power - in January (top) and July (bottom). All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Multi-institutional team extracts more energy from sunlight with advanced solar panels
Champaign IL (SPX) Oct 07, 2020
Researchers working to maximize solar panel efficiency said layering advanced materials atop traditional silicon is a promising path to eke more energy out of sunlight. A new study shows that by using a precisely controlled fabrication process, researchers can produce multilayered solar panels with the potential to be 1.5 times more efficient than traditional silicon panels. The results of the study led by University of Illinois Urbana-Champaign engineer Minjoo Larry Lee are published in the journ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Lighting the path to recycling carbon dioxide

Inducing plasma in biomass could make biogas easier to produce

Novel photocatalysts can perform solar-driven conversion of CO2 into fuel

Cascades with carbon dioxide

SOLAR DAILY
First tests for landing the Martian Moons eXploration Rover

Teams demonstrate swarm tactics in fourth major OFFSET Field Experiment

Technology developed for Lunar landings makes self-driving cars safer on Earth

Light processing improves robotic sensing, study finds

SOLAR DAILY
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

SOLAR DAILY
Investors load $500 mn into Uber's trucking business

Electric truck startup Nikola postpones December event

VW 'dieselgate' fraud: Timeline of a scandal

European carmakers' leather use fuelling deforestation: NGO

SOLAR DAILY
Energy-harvesting plastics pass the acid test

Could megatesla magnetic fields be realized on Earth?

KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism

Scientists present a comprehensive physics basis for a new fusion reactor design

SOLAR DAILY
Framatome US Richland site opens its new $20 million uranium recovery facility

Study: Renewables, not nuclear power, can provide truly low carbon energy

Filtering radioactive elements from water

Framatome joins with academia and industry partners to develop nuclear reactor digital twins

SOLAR DAILY
Canada spends on infrastructure to boost jobs, cut CO2 emissions

Deloitte scraps report on climate change benefit for GDP

'Big Four' accounting firm sees upside to climate change

Big promises, but can China be carbon neutral by 2060

SOLAR DAILY
Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest

Pine needles evolved to help trees cope with rainfall

Brazil rejects deforestation concerns; Victim of 'brutal disinformation' says Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.