![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Moscow, Russia (SPX) Oct 09, 2017
Researchers from Department of Material Sciences, Lomonosov MSU, explained how changing the ratio of components forming light-absorbing layer of a perovskite solar cell influences the structure of created films and battery efficiency. The results of the study were published in the Journal of Physical Chemistry C. Organic-inorganic perovskites are a new class of photoactive (i.e. reacting to light) materials. They were named after the mineral called perovskite (CaTiO3, calcium titanate) because of their structure being similar to, but their own properties are much more interesting. Such materials can be used to create perovskite solar batteries, which were first introduced only five years ago, but have already surpassed in efficiency the more widespread and more expensive silicon solar elements. In their previous study, the authors have found out that filiform (wire-like) hybrids of perovskites have acquired their shape because of the structure of intermediate compounds, which are formed during the process of perovskite crystallization. The researchers have discovered a whole group of these compounds, every one of which is a crystalline solvate. The crystalline solvates are crystalline compounds with the molecules of the precursor components' solvent built into their structure. The dissolved components precipitate from the solution and form a crystalline film of perovskite. The researchers selected and described three intermediate compounds which are crystalline solvates of one of the two solvents used most often in creating perovskite solar batteries. For two of these compounds, their crystal structure was established for the first time. "We have found out that the the formation of intermediate compounds is one of the key factors that determines functional properties of the final perovskite layer because perovskite crystals inherit the shape of those compounds. This, in turn, influences the film morphology and solar cell efficiency. It is especially important when creating thin perovskite films, because needle-like or filiform shape of crystals will lead to the film being discontinuous, which will significantly lower the efficiency of the solar cell. "The knowledge on the influence of the ratio of precursor reagents on the shape of the final perovskite crystals will allow to deliberately choose the conditions for obtaining optimal films, which will result in perovskite cells with high efficiency", - the principal investigator Alexey Tarasov, Ph. D., Head of Laboratory of New Materials for Solar Energetics (Department of Materials Science, Lomonosov Moscow State University), has told us. Such intermediate compounds are unstable, so the authors used synchrotron radiation and low temperatures to cool the crystals to the temperature of -173 C. The freezing allowed the scientists to stop the decomposition of the crystals and to run the necessary measurements to become able next to determine the structure of the solvates. Additionally, the researchers have studied the thermal stability of the obtained compounds and managed to calculate the energy of their formation using quantum-chemical modeling. Knowing the formation energy allows to explain why certain crystals are formed when using different solvents. The authors have also learned that the ratio of reagents in solution specifically determines which intermediate compound will form in the process of crystallization. Crystal structure of the intermediate compound defines the shape of the perovskite crystals formed, which determines the structure of the light-absorbing layer. This structure, in turn, influences the output of the solar battery created.
![]() Lausanne, Switzerland (SPX) Oct 03, 2017 Perovskite solar cells (PSCs) can offer high light-conversion efficiency with low manufacturing costs. But to be commercially viable, perovskite films must also be durable and not degrade under solar light over time. EPFL scientists have now greatly improved the operational stability of PSCs, retaining more than 95% of their initial efficiencies of over 20 % under full sunlight illuminatio ... read more Related Links Lomonosov Moscow State University All About Solar Energy at SolarDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |